
Coding Practices and Recommendations of Spring
Security for Enterprise Applications

Mazharul Islam∗, Sazzadur Rahaman∗, Na Meng∗, Behnaz Hassanshahi†, Padmanabhan Krishnan†,
Danfeng (Daphne) Yao∗

Virginia Tech, Blacksburg, VA∗, Oracle Labs, Australia†

{mazharul, sazzad14, nm8247, danfeng}@vt.edu, {behnaz.hassanshahi, paddy.krishnan}@oracle.com

Abstract—Spring security is tremendously popular among
practitioners for its ease of use to secure enterprise applications.
In this paper, we study the application framework misconfig-
uration vulnerabilities in the light of Spring security, which
is relatively understudied in the existing literature. Towards
that goal, we identify 6 types of security anti-patterns and
4 insecure vulnerable defaults by conducting a measurement-
based approach on 28 Spring applications. Our analysis shows
that security risks associated with the identified security anti-
patterns and insecure defaults can leave the enterprise application
vulnerable to a wide range of high-risk attacks. To prevent these
high-risk attacks, we also provide recommendations for practi-
tioners. Consequently, our study has contributed one update to
the official Spring security documentation while other security
issues identified in this study are being considered for future
major releases by Spring security community.

I. INTRODUCTION

Application frameworks enable reusing software designs at
the architecture level by capturing the common abstractions
of an application domain [1]. Spring is the most popular
application framework for enterprise Java applications [2], [3].
Spring security [4] offers reusable authentication and autho-
rization modules for enterprise applications that are written
in Spring. It also provides default protection against common
web-application related vulnerabilities, e.g., CSRF protection,
including common security response headers. Spring secu-
rity is highly customizable by design to enable seamless
integration with various use-cases. Unfortunately, the abuse
of such customization capabilities can be a great source of
application insecurity. For example, in [5], authors observed a
common trend of disabling CSRF protection for convenience
in StackOverflow posts. Without careful consideration, such
customization can render a web application vulnerable to
classic CSRF attacks.

Prior research on security issues arising from reusable
software components mostly focuses on library API mis-
use [6]–[12], while framework misconfigurations are largely
unexplored. For example, [5], [6], [9], [11] focus on under-
standing the nature of security API misuses. [6], [8] showed
the dangers of misusing application-level SSL/TLS and cryp-
tographic APIs. Researchers extensively studied the role of
StackOverflow’s misleading advices [5], [9], [13], poor API

This work has been supported by the National Science Foundation under
Grant No. CNS-1929701.

designs [14], lack of proper guidelines [15], etc., behind this
insecurity. Most of the existing methods to detect security API
misuses rely on static code analysis [7], [8], [10], [12], [16].
Although, misconfiguring of security modules in application
frameworks has great potential to cause insecurity, their nature,
severity, prevalence, and detection feasibility are still mostly
unknown.

In this paper, we present a thorough study of framework
misconfiguration vulnerabilities in Spring Security. Our goal
is to identify various classes of these vulnerabilities (referred
to as security anti-patterns), their nature, severity, and preva-
lence. Specifically, we pose the following research questions.
What are the common security anti-patterns in enterprise
Spring security applications? How severe are they? Most
importantly, how prevalent are they in real-world enterprise
software?

To find answers, we took a measurement-based approach.
We manually analyzed 28 Spring-based applications hosted
on GitHub to observe any insecure customization (i.e., se-
curity anti-patterns) of Spring security’s i) authentication
and ii) protection against exploits features. We also studied
the security of the default configurations of these features.
Our analysis discovered 6 types of security anti-patterns. We
observed that programmers tend to intentionally disable CSRF
protections, store secrets insecurely, use lifelong expiration of
access tokens, etc. Our analysis of Spring security’s default
configuration revealed 4 major vulnerabilities. Our analysis
found that Spring security uses 10 as the default strength (210

number of rounds) in Bcrypt during password encoding, while
it is recommended to use at least 16 [17] to be secured. We
also found that Spring security uses insecure MD5 hashing
to generate the “remember me” cookie. Most importantly, we
identified that Spring security does not offer any throttling
policy to limit the number of requests by users during API
invocation. This insufficiency might lead to denial of service
(DoS) attacks to applications using Spring security’s OAuth
functionality. Our findings on 4 major vulnerabilities of Spring
security’s default configuration resulted in one update to
Spring security’s official documentation, while other issues are
being considered for future major releases after we disclosed
them to the Spring security community.

In summary our contributions are as follows.
• Our analysis of 28 applications identified 6 common

Spring security anti-patterns that undermine its security

guarantees. During our analysis, we discovered 17 in-
stances of disabling CSRF tokens, 14 instances of hard
coded JWT signing key, 17 instances of storing secrets
insecurely. We also analyze the security risk associated
with them and highlight recommendations for practition-
ers on how to avoid the anti-patterns and thus improve
security.

• Our analysis of Spring security’s default configuration re-
vealed 4 major vulnerabilities, including the insecure use
of Bcrypt for password encoding, the use of MD5 hash to
generate “remember-me” cookie. We also identified that
the lack of throttling policy per API key is susceptible to
denial of service attacks.

• We divided our dataset into two groups, i.e., real-
world applications (8) and demo (20) projects and cross-
analyzed 6 security anti-patterns across the groups. Our
analysis revealed that the anti-pattern’s count ratio is
higher in demo projects than the real-world applications.
However, the nature of the anti-patterns is similar across
the two group.

II. THREAT MODEL AND METHODOLOGY

In this section, first, we present the threat model and then,
discuss the methodology of our study.

A. Threat model

Existing cryptographic API misuse studies (e.g., [6]–[12])
are not specific for Spring security framework. Enterprise
security issues in Spring security, such as the abuse of
customization of reusable components or improper security
management policies, are not well examined, with a few
exceptions. For example, studies in [18], [19] designed authen-
tication and authorization patterns and access control policies
of Spring security. In comparison, our paper aims to report
security anti-patterns in Spring projects and their security
threats. Specifically, we focus on the misconfigurations of
two Spring security features, i.e., i) authentication and ii)
protection against exploits. We also study the security status
of default configurations of these features.
Authentication. Spring security offers 9 types of authentica-
tions [20]. We analyze the use of 4 of these authentication
mechanisms as follows, i) username-password, ii) “remember
me” cookie, iii) OAuth 2.0 and iv) Java authentication and
authorization service (JAAS)-based authentication. Username-
password based authentication is the most common way to
authenticate users while “remember me” cookie facilitates
remembering users between sessions. JASS and OAuth2.0
based authentication are a bit different since they delegate the
authentication requests to their corresponding JASS server and
OAuth 2.0 provider respectively.

Misconfiguring them can lead to a wide range of problems
i.e., leaking application secrets (e.g., access tokens, passwords,
etc), enabling man-in-the-middle (MitM), denial of service
(Dos) attacks, etc.
Protection against exploits. Spring security also provides
protections against common exploits. In most of the cases,

these protections are enabled by default. To protect against
CSRF attacks, Spring security offers the following protections;
i) CSRF token and ii) “SameSite Attribute”-based protection.
CSRF token-based protection ensures the presence of CSRF
token in the HTTP request header to indicate its legitimacy.
In “SameSite Attribute”-based protection, the browser only
sends the “SameSite” session cookie if and only if both the
requested resource and the resource in the top-level brows-
ing context match the cookie. Spring security also enables
sending common HTTP security headers by default including,
HTTP Strict Transport Security, X-Frame-Options, X-XSS-
Protection, etc. Spring security also enables Strict Transport
Security by default to redirect HTTP traffic to HTTPS.

B. Methodology of the study

To systematically discover security anti-patterns, we develop
the following methodology. First, we collect a dataset of real-
world enterprise application source codes that uses Spring
security. Then, we carefully analyze and collect their security
configurations by using a descriptive coding technique [21].
After finding the use of a security feature, we extensively
match its configuration with the following seven knowledge-
base of common security issues; i) Common Weakness Enu-
meration (CWE) [22], ii) Openstack security anti-patterns alert
list [23], iii) Spring security official reference guide [24],
iv) Apigee Edge anti-patterns [25], v) Snyk vulnerability
Database [26], vi) previous research work on security anti-
patterns [27]–[31], vii) RFC documents [32]–[35]. If any of
these knowledge-base indicates an insecure configuration, we
analyze severity in the context of their usage. If an insecure
configuration is the result of a customization, we mark it as
a security anti-pattern. Otherwise, we mark it as an insecure
default configuration.

III. SECURITY ANTI-PATTERNS IN SPRING SECURITY

In this section, first, we will present our analysis result on
the collected data and then briefly illustrate each common
security misuse and their severity.
Data collection. We collected the source code of 28 appli-
cations hosted on GitHub that uses Spring security. 8 of the
selected projects are real-world enterprise applications and 20
of them are demo projects with example use of Spring security
framework. We considered the following three criteria to filter
them [36]:

• #Forks. The number of times the project has been forked.
This gives an indication that these repositories have been
adopted widely by other developers in their own code
base [37].

• #Stars. The number of times the project has been starred
by other developers which ensures that the curated repos-
itory is popular [38] among other developers.

• Originality. The project is not a clone or copy of another
existing project.

TABLE I
IDENTIFIED SECURITY MISUSES ARE PRESENTED WITH THEIR CORRESPONDING KNOWLEDGE-BASE REFERENCES, AFFECTING FEATURES, THREATS,

SEVERITY AND COUNTS IN 28 GITHUB PROJECTS. HIGH, MEDIUM, AND LOW SEVERITY LEVELS ARE DENOTED BY H/M/L RESPECTIVELY.

Type Rule Reference Feature Threat Severity Count (28)

Anti-patterns

(1) Using lifelong valid access tokens [22], [25], [29] Authentication Secrets leaking M 7
(2) Absence of state param in redirect URL [29] Authentication CSRF attacks H 11
(3) Using fixed secret to sign JWT tokens [22], [28], [34] Authentication Brute-force M 14
(4) Storing secrets in insecure places [26] Authentication Secrets leaking H 17
(5) Disabling CSRF protection [26], [27] Exploit protection CSRF attacks H 17
(6) Not using TLS for HTTP communication [22], [26], [28] Exploit protection Man-in-the-middle H 15

Insecure defaults

(7) Using Bcrypt with insecure params [24] Authentication Brute-force H 11
(8) Using MD5 in remember me cookie [23], [28] Authentication Brute-force H N/A
(9) Lack of req. throttling policy per API key [22], [33] Exploit protection DoS attacks L N/A
(10) Absence of content security policy (CSP) [26] Exploit protection Code injection L N/A

A. Analysis Result

After analyzing the usage of Spring security framework of
the selected projects, we identified 6 Spring security anti-
patterns and 4 insecure default behaviors. Table I presents
these security misuses, with their reference knowledge-base,
affecting features, threat, severity, and counts in 28 projects.
After that, we divided the dataset into two groups i.e., i) 8 real-
world applications and ii) 20 demo projects. Then we cross-
checked the security misuse instances across them. Table II,
presents the results of our analysis. Although the misuse count
ratio is higher in demo projects than the real-world projects,
the nature of the misuse cases are vastly overlapped (Column
3 in Table II). It will be interesting to see whether (and
how) developers are being influenced by these insecure demo
codebases that can be directly copied.

Next, we describe each of them, their severity, and rec-
ommend suggestions on how developers can properly resolve
them. After that, we present several interesting case studies.

TABLE II
SECURITY MISUSE COUNTS FOR 8 REAL-WORLD AND 20 DEMO PROJECTS.

Anti-patterns Real-word Demo Common
projects (8) projects (20) cases

(1) lifelong valid access tokens 1 6 0
(2) Absence of state param 2 9 2
(3) Fixed secrets to sign JWT tokens 6 8 4
(4) Storing secrets in insecure places 5 12 5
(5) Disabling CSRF protection 6 11 6
(6) Not using TLS 4 11 4

B. Common Spring security anti-patterns

1) Using lifelong valid access tokens: Spring security al-
lows the developers to specify an expiration time for each
randomly generated access tokens. Developers want access
token with a long lifetime as they are easier to manage.
However, on the other hand, long lifetime increases the risk
of reply attacks if any access token gets leaked. The general
advise from [23], [25], [32] is to keep the life time just a
bit longer than a normal user session time which can be
generalized to a period of 15 minutes to 2 hours depending on

different use cases. However, we have noticed a security anti-
pattern among developers of setting lifetime of access token
primarily arbitrary long in the range of 10-20 days as shown
on listing 1.

Listing 1. Setting lifelong valid access token
1 app:
2 auth:

3 tokenExpirationMsec: 864000000
4 // setting unnecessary long lifetime of 10 days

To avoid this security anti-pattern, we suggest the developers
to minimize the lifetime of access token as much as possible so
that whenever an attacker tries to reply the previously leaked
secret access token it would already pass the expiration period.
We also suggest to leverage refresh token to facilitate the user
to provide a new access token effectively each time when the
lifetime of an access token expires.

2) Absence of state parameter in OAuth 2.0 Redirect
URLs: The continuous influx of increasing popularity of
OAuth 2.0 [39] among developers motivated the active Spring
security community to introduce the support for OAuth 2 in
its lasted release [40]. One of the most crucial parts among
many of OAuth 2.0 authorization framework is sending the
auth_code generated by authorization server to client appli-
cations via redirection URLs [32]. Interestingly redirect URL
has a well define structure with guessable query parameters
(1st redirect URL on Fig. 1). This can enable the attacker to
construct a similar but malicious redirect URL by replacing
user’s auth code with their own auth code (2nd redirect URL on
Fig. 1). By making the victim user clicking on this malicious
redirect URL, attacker can perform a forced login CSRF
attack [41].

To prevent this, RFC-6819 [33] has recommended a strict
guideline to add an additional state parameter - the value
of which is randomly generated (as shown on the 3rd redirect
URL in Fig. 1). In this way the attacker won’t be able to
guess the value of state parameter and construct a malicious
redirect URL. However, we have noticed in contrast to this
strict recommendation, developers tend not to use the addi-
tional state parameter in redirect URL rendering the client
application vulnerable to previously mentioned forced login
attack CSRF attack. Hence we consider the missing of state
parameter in redirect URL as a security anti-pattern.

1.https://graph.facebook.com/oauth/?grant_type="authorization_code"

&code=users_auth_code&client_id="aiqyi"&client_secret="secret"

2. https://graph.facebook.com/oauth/?grant_type="authorization_code"

&code=attacker's_code&client_id="aiqyi"&client_secret="secret"

3. https://graph.facebook.com/oauth/?grant_type="authorization_code"

&code=users_auth_code&client_id="aiqyi"&client_secret="secret"

&state = random_value

Fig. 1. The 2nd redirect URL constructed from 1st is vulnerable to forced
login CSRF attack. The 3rd redirect URL is not vulnerable due to the non
guessable state parameter.

The proper way to handle this security anti-pattern is to
randomly generate a value and add this value to the state
parameter in the redirect URL as shown on listing 2.

Listing 2. Adding state param in redirect_URL
1 public String getToken(@RequestParam String code){
2 ...
3 params.add("grant_type","authorization_code");
4 params.add("code",code);
5 params.add("client_id","aiqiyi");
6 params.add("client_secret","secret");

7 params.add("state",127621437303857);
8 // Randomly generated value of state param
9 ...

10 }

3) Using fixed secrets to sign JWT tokens: Spring se-
curity facilities the use of JSON Web Tokens (JWT) [42]
to authenticate users by adding JwtTokenFilter to the
DefaultSecurityFilterChain with only a few lines
of additional code. The way JWT works is that there a set of
claims embedded inside JWT and the server signs these claims
cryptographically using secret key(s). The user must present
these cryptographically signed claims to the server and then
the server verifies them to check the authentication of these
presented claims. This design allows the server to be stateless
and consequently scalable which is one of the major reasons
behind the emerging popularity of JWT.

However, we noticed that developers tend to sign the claims
of JWT cryptographically by predictable fixed secret key
which makes it inherently vulnerable [8] and relatively easy for
attackers to crack the fixed secret key by brute force attacks.

1 public class TokenProvider {
2 public String createToken(Authentication auth) {
3 Public String JWT_SIGN_KEY = "123456";
4 token = Jwts.builder()
5 ...

6 .signWith(SignatureAlgorithm.HS512, JWT_SIGN_KEY)
7 // signing with a hard coded fixed secret
8 .compact();
9 ...

10 return token;
11 }
12 }

This insecure practice of using a fixed secret to sign all JWT
can lead to a great inconvenience frequently when any one
of the valid JWT gets leaked. Because then invalidating the
leaked JWT would require the developer to change the fixed
secret manually. This would automatically invalidate all other
valid JWT as well which have not been leaked. Perhaps a
quick way around instead of changing the fixed secret would
be to keep a blacklist for leaked JWT in the database. However

keeping, maintaining, and querying to the database if the JWT
is blacklisted for each request can be expensive and most
importantly introduces scalability problems, which is one of
the very basic problems why JWT was introduced and is
popular among developers.

RFC-8725 [35] strongly discourages this insecure coding
practice and advises the developers to use random crypto-
graphic keys with sufficient entropy. To solve this problem, we
suggest to leverage the optionally available JWT key identifier
parameter kid which can be leveraged for managing multiple
randomly generated secret keys [34].

4) Storing secrets in insecure places: To avoid application
specific secrets e.g., password, DB-root password from being
leaked developers need to avoid keeping them in unsafe places
(e.g., plain-text, local storage). We have noticed a security
anti-pattern among developers to write the application specific
secrets to application.yml configuration file in plain text
as shown in listing 3.

Listing 3. Stroing secrets insecurely in application.yml
1 spring:
2 datasource:
3 username: root

4 password: uOtmALFgsfxgYzEg1uLXl3O

To circumvent this security anti-pattern and to handle applica-
tion specific secrets securely, Spring vault facilitates a succinct
solution. Spring vault which is an abstraction layer on top of
HashiCorp vault [43] providing annotation based access for
clients to store and retrieve secrets in a secure way as shown
in listing 4.

Listing 4. Retrieving secrets from Spring vault
1 @Value("${clientPassword}")
2 String client_password;

5) Disabling CSRF protection: Spring security by default
secures the web applications by defining a method csrf()
and implicitly enabling this function invocation for each state-
changing request (e.g., PATCH, POST, PUT, DELETE) [44].
We have observed a recurring insecure practice among devel-
opers to manually disabling the default CSRF protection as
shown on listing 5.

Listing 5. Manually disabling default CSRF protection
1 @Override
2 protected void configure(HttpSecurity hs) throws Exception {

3 hs.csrf.disable()
4 }

Spring security’s inherently different CSRF protection mech-
anism is a plausible answer to the prominence of this inse-
cure coding practice. Spring security makes the CSRF token
inaccessible to the front-end of the application by setting
httpOnly to true. Being unable to access the CSRF token,
front-end JavaScript frameworks (e.g., Angular JS, Vue JS,
Laravel etc.) will throw configuration errors. To avoid these
errors developers primarily tend to turn off the default CSRF
protection the developers seeking a short workaround way
without understanding the insecurity associate with doing so.

The proper way to circumvent this error is to

set httpOnly to false as shown on listing 6. That being
said, we want to point out that even though setting the
httponly to false can reveal the CSRF token to JavaScript
loaded from the same domain, third party JavaScript loaded
from different domain will not be able to access the access
token because of same-origin policy; thereby defeating Cross
Site Scripting attacks.

Listing 6. Proper way to circumvent CSRF misconfiguration errors
1 @Override
2 protected void configure(HttpSecurity hs) throws Exception {
3 hs.csrf(c -> c
4 .csrfTokenRepository(CookieCsrfTokenRepository

5 .withHttpOnlyFalse())
6 // Marking the CSRF Token’s HttpOnly to False.
7)
8 }

We further want to emphasize that disabling CSRF protection
itself is not always a security problem when authentication is
done via bearer tokens. However, it can be a severe security
problem when Spring security will perform authentication
based on the authentication cookie (i.e., JESSIONID) stored
on the user’s browser.

6) Not using TLS for HTTP communications: The secu-
rity of many components of authentication and authorization
packages in Spring security (e.g., oauth 2.0, SAML 2.0, CAS,
OpenID connect) recommend, and in some cases mandate the
use of TLS. However, our analysis found that developers tend
to avoid the use of TLS in many places and show a similar
trend highlighted in previous study [5], [12], [45].

1 eureka:
2 client:
3 serviceUrl:

4 defaultZone: http:root@paascloud-eureka:8761
5 // use of HTTP without TLS

Although, it is difficult to create, install, find, and validate
TLS certificates in development environment, we suggest the
developers to enable TLS in the production environment as
suggested in [6].

C. Insecure default configuration

1) Using BCrypt with insecure params: Spring security
supports multiple ways to implement a PasswordEncoder.
A brief summary of them is presented in section A. Here, we
focus on BCryptPasswordEncoder, which is popularly
used to encode passwords. We found that the default con-
figuration of BCryptPasswordEncoder is vulnerable to
brute-force attacks.
BCryptPasswordEncoder is based a deliberately slow

hashing function Bcrypt [46]. This slowness or number
of rounds in Bcrypt is one of the key factors which
makes it resistant to do feasible brute-force attack. The
security strength (i.e., slowness or number of rounds) of
BCryptPasswordEncoder can be specified by the devel-
opers as a parameter to the constructor. However we noticed
that the default strength of BCryptPasswordEncoder is
10 (210 number of rounds) [47]. However as mentioned pre-
viously [17] and confirmed by our own experiments presented
in Appendix B, this default strength does not have enough

slowness and essentially lack the security strength needed to
prevent brute-force attack.

As developers tend not to pass any security strength pa-
rameter to the constructor assuming the default strength is
secure enough, this tendency (as shown on listing 7) leaves an
exploitable opportunity for the attackers.

Listing 7. Default strength is vulnerable to brute-force attack
1 @Bean
2 public PasswordEncoder passwordEncoder() {

3 return new BCryptPasswordEncoder();
4 /* using default strength 10 is vulnerable
5 to feasible brute-force attacks */
6 }

Hence, we consider using the default insecure strength for
BcryptPasswordEncoder as an insecure default config-
uration and recommend the developers to override the default
strength by adjusting it according to their own system.

2) Using weak hash algorithm MD5 in remember-me
cookie: Spring security provides remember-me which
stored in the browser. allows the browser to remember the
user for future sessions and causing automated login to take
place. This remember-me cookie is constructed from the
MD5 hashing of the username, expiration time of the cookie,
and password and secret key as shown in listing 8.

Listing 8. Construction of remember-me cookie
1 base64(username + ":" + expirationTime + ":" +

2 md5Hex(username + ":" + expirationTime +
3 // Use of weak hashing algorithm MD5
4 ":" password + ":" + key))

The problem with this approach is that MD5 is considered
broken, which susceptible to collision attacks [48] and modular
differential attacks [49]. Hence, attackers can easily recover
sensitive information or temper the remember-me cookie.
Therefore, we suggest the Spring security maintainers to fix
this issue by replacing MD5 with a secure hashing algorithm
(e.g., SHA-256).

3) Lack of required throttling policy per API key: One of
the most important parts of resource management policy for
web API is to set a proper throttling policy per user. This
throttling policy places a limit on the number of requests a user
can make with a secret API key. Otherwise, an attacker can
use use a valid secret API key to generate a massive number
of requests than the web service can handle. In this way, the
attacker will be able to make a denial of service attack for
other users. However, unlike other security framework (e.g.,
Django [50]), Spring security lacks this as a built-in feature
given the prevalence of this DoS attack with custom made
bots. An IP-based throttling policy can prevent DoS attack
but then attackers can switch to DDoS attack to abuse valid
API keys. We suggest a manual solution where the developers
build custom filter and register it in the Spring context.

Listing 9. Example of adding content security policy headers
1 @Override
2 protected void configure(HttpSecurity hs) {
3 hs
4 ...
5 .headers(headers -> headers
6 .contentSecurityPolicy(csp -> csp

7 .policyDirectives("script-src ’self’"))
8 ...
9 }

4) Absence of content security policy: Unexpectedly, un-
like other protection mechanisms, Spring security does not
add content security policy (CSP) HTTP headers by default.
CSP helps the developers to enforce a fine-grained security
policy easily to prevent code injection attacks e.g., cross site
scripting, clickjacking, and data injection, etc. For example, if
a developer perceives JavaScript from all external sources as
untrusted then the developer needs to set the CSP header to
self to prevent the browser from loading unsafe JavaScript
from any untrusted external sources as shown on listing 9.

We have noticed a prominent tend among developers of
not adding the CSP headers manually even though adding the
headers CSP to prevent varieties of code injection attacks is
important. Especially, because these code injection attacks are
not trivial to prevent from security stand point. Developers
might perceive that just like other protection mechanisms CSP
headers are provided by default on in Spring security. Hence,
we consider the case of not setting the CSP HTTP headers as
an insecure default.

D. Severity of the misconfigurations

Each security misuses discussed in the previous sec-
tion III-B, III-C has specific attack vectors presented in the
literature. To prioritize them based on their security severity,
we group them into three categories high, medium, and low.
In this regard we consider two criteria i) attack difficulty, and
ii) attacker’s gain as inspired from the Common Vulnerability
Scoring System (CVSS) calculator [51]. The assignments of
these severities to identified security misuses are highlighted
in Table I and described as follows.

1) High: Anti-patterns causing CSRF and man-in-the-
middle attacks are easy to construct and provide large gain for
the attackers. Insecure default MD5 in remember me cookie
and BCrypt with insecure param can be brute-force easily
given the high number of available cracking tools. Attacks
originating from exploiting secrets stored in insecure places
are easy to construct as well.

2) Medium: Attackers can try to do offline brute force
attack to guess the fixed secret key used to sign the JWT token
which can be time consuming depending on the entropy/ran-
domness level and length of the fixed secret key. Moreover
lifelong access token can be reused/replayed by attackers if
and only if it is leaked.

3) Low: We place the two insecure defaults which depend
on the presence of another vulnerability for the attacker to take
advantage. For example absence of content security policy can
be leveraged if and only if there is Cross site vulnerability
already present. In the same way lack of required throttling
policy per API key can cause DoS/DDoS attack if attacker
can bypass the network level protection to mitigate DoS/DDoS
attack in the first place.

E. Case Study

Simplicity and performance over insecure practices. In one
real-world application, we saw the following comments before
one of the security anti-pattern.

“THIS IS NOT A SECURE PRACTICE! For simplicity, we
are storing a static key here.”

In another case, a developer responded to us for a potential
CSRF attack due to the absence of state parameter in
redirect URL as following,

“Increasing the state parameter can effectively prevent
CSRF attacks. But my demo is just a simple sso demonstration.
The simplest way to demonstrate the entire sso interaction
process does not need to consider CSRF attacks.”

In another project, we noticed that the developer inten-
tionally downgraded the default strength 10 (210 rounds)
of BCryptPasswordEncoder to 8 to increase the per-
formance. This illustrates that developers more often prefer
simplicity and performance over secure coding practices.
Storing application secrets in config file. We observed that
in 3 applications and 8 demo applications, developers stored
secrets in the application.yml. Especially, we observed
5 number of applications to store secrets to sign the JWT in
application.yml files. It is recommended to store these
secrets in the server’s key stores [12].
Separating development and production environments.
Sometimes developers avoid configuring TLS in their devel-
opment environment [45]. A similar configuration will cause a
devastating effect on the production environment. Spring secu-
rity enables separating two different environments by simply
using two separate configuration files. However, we observed
that in 13 projects, developers used the same configuration of
insecure TLS in both development and production.

IV. DISCUSSION

Disclosure of our findings. We made an effort to share our
concerns about these 3 major vulnerabilities found with the
Spring security community. We created two pull requests and
one issue on the master branch of Spring security project
about i) replacing weak MD5 with a strong hashing algorithm
SHA-256 ii) adding proper guidelines in Spring security
official documentation about setting a secure strength for
BCryptPasswordEncoder iii) possibility of performing
DoS attack exploiting lack of required throttling policy per
API key. The second request was already accepted and the
community agreed with us on others. However, they expressed
to remain passive for now but will consider bringing our
suggested changes in the next Spring security major release.
We also reported some of the severe cases to the application
developers and in the process of disclosing others.
Limitations. The derived security anti-patterns are mainly
based on manual inspection and therefore is subjected to
human bias. To address this, the first two authors of the paper
carefully and independently apply analysis multiple times to
verify the security anti-patterns. We also acknowledge that the
data-set constructed by popularity and adaption measure is

susceptible to subjectivity, as this filtering measure may incor-
rectly remove some relevant projects using spring security.

V. CONCLUSION

Without careful considerations, customizing application
frameworks can cause critical vulnerabilities in an enterprise
application. In this paper, we studied the application frame-
work misconfiguration vulnerabilities in the light of Spring
security. First, by analyzing 28 Spring security applications,
we identified 6 security anti-patterns and 4 insecure default
behaviors representing possible insecure use-cases of Spring
security. Our analysis showed that the security anti-patterns
are prevalent and similar across the real-world and demo
applications, hence, pose a realistic threat.

REFERENCES

[1] D. C. Schmidt and F. Buschmann, “Patterns, frameworks, and mid-
dleware: Their synergistic relationships,” in Proceedings of the 25th
International Conference on Software Engineering, May 3-10, 2003,
Portland, Oregon, USA, pp. 694–704, 2003.

[2] “2020 java technology report.” https://www.jrebel.com/blog/
2020-java-technology-report. [Online; accessed 30-April-2020].

[3] “Developer survey results 2019: Web frameworks.” https://insights.
stackoverflow.com/survey/2019#technology- -web-frameworks. [On-
line; accessed 30-April-2020].

[4] “Spring Security.” https://spring.io/projects/spring-security. [Online;
accessed 28-April-2020].

[5] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure
Coding Practices in Java: Challenges and Vulnerabilities,” in ACM
ICSE’18, (Gothenburg, Sweden), May 2018.

[6] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating SSL
certificates in non-browser software,” in ACM CCS’12, 2012.

[7] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why Eve and Mallory love Android: an analysis of
Android SSL (in)Security,” in ACM CCS’12, pp. 50–61, 2012.

[8] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, pp. 73–84, 2013.

[9] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack Overflow Considered Harmful? The Impact of
Copy&Paste on Android Application Security,” in IEEE S&P’17,
pp. 121–136, 2017.

[10] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL: An
Extensible Approach to Validating the Correct Usage of Cryptographic
APIs,” in ECOOP’18, pp. 10:1–10:27, 2018.

[11] R. Paletov, P. Tsankov, V. Raychev, and M. T. Vechev, “Inferring
crypto API rules from code changes,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, pp. 450–464, 2018.

[12] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. Yao, “Cryptoguard: High precision detec-
tion of cryptographic vulnerabilities in massive-sized java projects,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2455–2472, 2019.

[13] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags, “How
reliable is the crowdsourced knowledge of security implementation?,” in
Proceedings of the 41st International Conference on Software Engineer-
ing, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pp. 536–547,
2019.

[14] Y. Acar, M. Backes, S. Fahl, S. L. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic apis,” in
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pp. 154–171, 2017.

[15] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and
S. Fahl, “Developers need support, too: A survey of security advice
for software developers,” in IEEE Cybersecurity Development, SecDev
2017, Cambridge, MA, USA, September 24-26, 2017, pp. 22–26, 2017.

[16] A. Bianchi, Y. Fratantonio, A. Machiry, C. Kruegel, G. Vigna, S. P. H.
Chung, and W. Lee, “Broken fingers: On the usage of the fingerprint API
in android,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018, 2018.

[17] “Recommended # of rounds for bcrypt.” https://security.stackexchange.
com/questions/17207/recommended-of-rounds-for-bcrypt. Last ac-
cessed: 2020-04-01.

[18] A. Dikanski, R. Steinegger, and S. Abeck, “Identification and implemen-
tation of authentication and authorization patterns in the spring security
framework,” in The Sixth International Conference on Emerging Security
Information, Systems and Technologies (SECURWARE 2012), pp. 14–30,
2012.

[19] A. Armando, R. Carbone, E. G. Chekole, and S. Ranise, “Attribute based
access control for apis in spring security,” in Proceedings of the 19th
ACM Symposium on Access Control Models and Technologies, SACMAT
’14, (New York, NY, USA), p. 85–88, Association for Computing
Machinery, 2014.

[20] “Authentication Mechanisms.” https://docs.spring.io/spring-security/site/
docs/current/reference/html5/#servlet-authentication. Last accessed:
2020-04-01.

[21] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[22] “MITRE.” https://cwe.mitre.org/index.html. Last accessed: 2020-04-01.
[23] “Openstack Security Impact Check.” https://wiki.openstack.org/wiki/

Security/OpenStack Security Impact Checks#Testing for Security
Anti-patterns. [Online; accessed 29-April-2020].

[24] “Spring Security Reference.” https://docs.spring.io/spring-security/site/
docs/5.3.0.RELEASE/reference/html5. [Online; accessed 29-April-
2020].

[25] “Introduction to antipatterns.” https://docs.apigee.com/api-platform/
antipatterns/intro. Last accessed: 2020-04-01.

[26] “Vulnerability DB — Snyk.” https://snyk.io/vuln. Last accessed: 2020-
04-01.

[27] T. Nafees, N. Coull, I. Ferguson, and A. Sampson, “Vulnerability anti-
patterns: A timeless way to capture poor software practices (vulnerabil-
ities),” in Proceedings of the 24th Conference on Pattern Languages of
Programs, PLoP ’17, (USA), The Hillside Group, 2017.

[28] A. A. U. Rahman et al., “Anti-patterns in infrastructure as code.,” 2019.
[29] P. Siriwardena, Advanced API Security. Springer, 2014.
[30] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do

developers update their library dependencies?,” Empirical Softw. Engg.,
vol. 23, p. 384–417, Feb. 2018.

[31] M. del Pilar Salas-Zárate, G. Alor-Hernández, R. Valencia-Garcı́a,
L. Rodrı́guez-Mazahua, A. Rodrı́guez-González, and J. L. L. Cuadrado,
“Analyzing best practices on web development frameworks: The lift
approach,” Science of Computer Programming, vol. 102, pp. 1–19, 2015.

[32] Internet Engineering Task Force, “The OAuth 2.0 authorization frame-
work.” https://tools.ietf.org/html/rfc6749. Last accessed: 2020-04-01.

[33] Internet Engineering Task Force (IETF), “OAuth 2.0 threat model
and security considerations.” https://tools.ietf.org/html/rfc6819. Last
accessed: 2020-04-01.

[34] “Json Web Signature (JWS).” https://tools.ietf.org/html/rfc7515. Last
accessed: 2020-04-01.

[35] “Json Web Token Best Current Practices.” https://tools.ietf.org/html/
rfc8725. Last accessed: 2020-04-01.

[36] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[37] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why and
how developers fork what from whom in github,” Empirical Software
Engineering, vol. 22, no. 1, pp. 547–578, 2017.

[38] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 334–
344, IEEE, 2016.

[39] “IETF OAuth working group.” https://oauth.net/2. Last accessed: 2020-
04-01.

[40] “What’s New in Spring Security 5.0.” https://docs.spring.io/
spring-security/site/docs/5.0.x/reference/htmlsingle/#new-features.
Last accessed: 2020-04-01.

[41] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-
site request forgery,” in Proceedings of the 15th ACM conference on
Computer and communications security, pp. 75–88, 2008.

https://www.jrebel.com/blog/2020-java-technology-report
https://www.jrebel.com/blog/2020-java-technology-report
https://insights.stackoverflow.com/survey/2019#technology-_-web-frameworks
https://insights.stackoverflow.com/survey/2019#technology-_-web-frameworks
https://spring.io/projects/spring-security
https://security.stackexchange.com/questions/17207/recommended-of-rounds-for-bcrypt
https://security.stackexchange.com/questions/17207/recommended-of-rounds-for-bcrypt
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#servlet-authentication
https://docs.spring.io/spring-security/site/docs/current/reference/html5/#servlet-authentication
https://cwe.mitre.org/index.html
 https://wiki.openstack.org/wiki/Security/OpenStack_Security_Impact_Checks#Testing_for_Security_Anti-patterns
 https://wiki.openstack.org/wiki/Security/OpenStack_Security_Impact_Checks#Testing_for_Security_Anti-patterns
 https://wiki.openstack.org/wiki/Security/OpenStack_Security_Impact_Checks#Testing_for_Security_Anti-patterns
 https://docs.spring.io/spring-security/site/docs/5.3.0.RELEASE/reference/html5
 https://docs.spring.io/spring-security/site/docs/5.3.0.RELEASE/reference/html5
https://docs.apigee.com/api-platform/antipatterns/intro
https://docs.apigee.com/api-platform/antipatterns/intro
 https://snyk.io/vuln
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6819
 https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc8725
https://tools.ietf.org/html/rfc8725
https://oauth.net/2
https://docs.spring.io/spring-security/site/docs/5.0.x/reference/htmlsingle/#new-features
https://docs.spring.io/spring-security/site/docs/5.0.x/reference/htmlsingle/#new-features

[42] “Internet engineering task force (IETF), oauth 2.0 threat model and se-
curity considerations.” https://tools.ietf.org/html/rfc7519. Last accessed:
2020-04-01.

[43] “Vault by HashiCorp.” https://www.vaultproject.io. Last accessed: 2020-
04-01.

[44] “java - simple example of spring security with
thymeleaf.” https://stackoverflow.com/questions/25692735/
simple-example-of-spring-security-with-thymeleaf. Last accessed:
2020-04-01.

[45] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 164–175, IEEE, 2019.

[46] N. Provos and D. Mazières, “A future-adaptive password scheme,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’99, (USA), p. 32, USENIX Association, 1999.

[47] “Bcryptpasswordencoder (spring-security-docs-manual 5.3.2.RELEASE
API).” https://docs.spring.io/spring-security/site/docs/current/api/org/
springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html.
Last accessed: 2020-04-01.

[48] B. Den Boer and A. Bosselaers, “Collisions for the compression function
of md5,” in Workshop on the Theory and Application of of Cryptographic
Techniques, pp. 293–304, Springer, 1993.

[49] X. Wang and H. Yu, “How to break md5 and other hash functions,”
in Annual international conference on the theory and applications of
cryptographic techniques, pp. 19–35, Springer, 2005.

[50] “Throttling- Django REST framework.” https://www.
django-rest-framework.org/api-guide/throttling/. Last accessed:
2020-04-01.

[51] “Common Vulnerability Scoring System.” https://www.first.org/cvss/
calculator/3.0. Last accessed: 2020-04-01.

APPENDIX A
IMPLEMENTATIONS OF PASSWORD HASHING

Spring security provides an array of PasswordEncoder
implementation for storing password. We provide here
a summary of these implementations. However among
them Md4Password, MessageDigest, Standard, and
LdapSha password encoders use digest based password en-
coding which is not considered secure. As a result they are
deprecated to indicate that they are legacy implementation.
Argon2Password and SCryptPassword password en-
coder uses Bouncy castle. One problem associated with this is
that Bouncy castle does not exploit parallelism/optimizations
that other password crackers will. Therefore there is an uneven
asymmetry between attacker and defender. The most recom-
mended way to implement the PassworEncoder interface
is BCryptPasswordEncoder. Table III summarizes the 9
option for password encoding offered by Spring security.

TABLE III
SUMMARY OF PASSWORD ENCODING INTERFACE IMPLEMENTATIONS

Implementation Name Comment

BCryptPasswordEncoder preferred implementation

NoOpPasswordEncoder stores password in plain-text

Md4PasswordEncoder digest based password encoding
MessageDigestPasswordEncoder

StandardPasswordEncoder

LdapShaPasswordEncoder

Argon2PasswordEncoder uses Bouncy castle
SCryptPasswordEncoder

Pbkdf2PasswordEncoder uses PBKDF2

APPENDIX B
INSECURE DEFAULT STRENGTH FOR BCRYPTPASSWORD

ENCODER

The Spring security reference guide mentions that the
strength of BCryptPasswordEncoder should be tuned
to take about 1 second to verify a password on the devel-
oper’s own system. However, according to our experiments
the default strength of BCryptPasswordEncoder which
is 10 (number of rounds 210) takes around 0.1 seconds to
verify a password. This is way less than 1 second lower limit.
Since developers tend to use the default strength without any
consideration assuming that the default implementation should
have enough strength we consider this an insecure default
configuration.
On our system (LENOVO Ideapad- Intel(R) Core(TM) i5 CPU
@ 1.60GHz - 7.4 GiB RAM - running Ubuntu 20.04 64 bit),
we found out that appropriate secure strength should be 14 as
shown on Figure 2. We emphasize that for GPU which can
perform orders of magnitude faster than a typical CPU like the
one we have used, the appropriate secure strength to prevent
feasible brute-force attack should be higher than 14.

0

1

2

3

4

5

6

10 11 12 13 14 15 16

BCryptPasswordEncoder’s strength

M
e
a
n
 t
im

e
 t
o
 v

e
ri

fy
 s

in
g
le

 p
a
s
s
w

o
rd

 (
s
e
c
)

Fig. 2. Mean time to verify a password of size 128 bits on our own system
for different strength. Ideally the strength should add enough slowness so that
it takes at least 1 sec to verify a password as marked by the horizontal dashed
line.

APPENDIX C
FINDING VULNERABILITIES IN 8 REAL WORLD PROJECTS

We also test the 8 real-world projects using a know vulner-
ability scanning tool Snyk [26] and then parse the scanning
results. Snyk maintains an online database of known vulnera-
bility and can automatically build the project to check against
these known vulnerabilities. A summary of the results is shown
in Table IV.

https://tools.ietf.org/html/rfc7519
https://www.vaultproject.io
https://stackoverflow.com/questions/25692735/simple-example-of-spring-security-with-thymeleaf
https://stackoverflow.com/questions/25692735/simple-example-of-spring-security-with-thymeleaf
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://www.django-rest-framework.org/api-guide/throttling/
https://www.django-rest-framework.org/api-guide/throttling/
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0

TABLE IV
OF VULNERABILITY FOUND AND THEIR RISK LEVEL IN 8 REAL WORLD
APPLICATIONS USING SNYK. RISK LEVEL HIGH, MEDIUM, AND LOW ARE

DENOTED BY H, M, L RESPECTIVELY.

No Project # forks # stars LoC Risk # of
name level vulnerabilities

1 paascloud-master 3.6k 7.7k 55.8k H 68
M 18
L 7

2 xboot 968 2.6k 21.2k H 3
M 3
L 0

3 Spring-boot-cloud 1.2k 2k 523 H 71
M 18
L 7

4 sso 323 702 3.3k H 55
M 10
L 5

5 FEBS-cloud 326 660 11.9k H 5
M 6
L 1

6 fw-cloud-framework 325 638 13.9k H 63
M 6
L 3

7 cas 3.2k 7.5k 33.5k No vulnerability found

8 microservices-platform 736 1.6k 25.4k Can not run Snyk because of build errors

	Introduction
	Threat Model and Methodology
	Threat model
	Methodology of the study

	Security Anti-patterns in Spring Security
	Analysis Result
	Common Spring security anti-patterns
	Using lifelong valid access tokens
	Absence of state parameter in OAuth 2.0 Redirect URLs
	Using fixed secrets to sign JWT tokens
	Storing secrets in insecure places
	Disabling CSRF protection
	Not using TLS for HTTP communications

	Insecure default configuration
	Using BCrypt with insecure params
	Using weak hash algorithm MD5 in remember-me cookie
	Lack of required throttling policy per API key
	Absence of content security policy

	Severity of the misconfigurations
	High
	Medium
	Low

	Case Study

	Discussion
	Conclusion
	References
	Appendix A: Implementations of Password hashing
	Appendix B: Insecure default strength for BCryptPassword Encoder
	Appendix C: Finding vulnerabilities in 8 real world projects

