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ABSTRACT

Distributed data analytics platforms (i.e., Apache Spark, Hadoop)

provide high-level APIs to programmatically write analytics tasks

that are run distributedly in multiple computing nodes. The design

of these frameworks was primarily motivated by performance and

usability. Thus, the security takes a back seat. Consequently, they

do not inherently support fine-grained access control or offer any

plugin mechanism to enable it, making them risky to be used in

multi-tier organizational settings.

There have been attempts to build “add-on” solutions to enable

fine-grained access control for distributed data analytics platforms.

In this paper, first, we show that straightforward enforcement of

“add-on” access control is insecure under adversarial code execution.
Specifically, we show that an attacker can abuse platform-provided
APIs to evade access controls without leaving any traces. Second, we
designed a two-layered (i.e., proactive and reactive) defense system
to protect against API abuses. On submission of a user code, our

proactive security layer statically screens it to find potential attack

signatures prior to its execution. The reactive security layer em-

ploys code instrumentation-based runtime checks and sandboxed

execution to throttle any exploits at runtime. Next, we propose

a new fine-grained access control framework with an enhanced

policy language that supports map and filter primitives. Finally,

we build a system named SecureDL with our new access control

framework and defense system on top of Apache Spark, which

ensures secure access control policy enforcement under adversaries

capable of executing code. To the best of our knowledge, this is the

first fine-grained attribute-based access control framework for dis-

tributed data analytics platforms that is secure against platform API

abuse attacks. Performance evaluation showed that the overhead

due to added security is low.
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1 INTRODUCTION

In recent years, the capability of collecting information and its usage

is increasing at an exponential rate. Consequently, the big data

market is also growing significantly [27]. To process this exorbitant

amount of data [24], one of the most popular approaches is to use

distributed data processing frameworks [19, 29, 44, 56–58], such

as Apache Spark [6], Hadoop [1], Hive [2], and Pig [5], which

can be scaled to process an increasing amount of data by adding

more computing nodes. Typically, these systems are protected with

basic access control and security mechanisms. Most use the access

control models provided by the underlying distributed file system

protections [29, 56, 57], enforced only at the file level. Such coarse-

grained access control provided by the default is insufficient for

many applications. Hence, this limitation spurred further research

on enabling fine-grained access control for these distributed data

analytics platforms.

One approach to enable fine-grained access control protections

is by providing higher-level abstractions such as SQL (e.g., Hive

built on MapReduce and HDFS, or DeltaLake built on top of Apache

Spark). In these approaches, since user-submitted code is restricted

to SQL and the underlying data is relational, existing access con-

trol solutions developed for relational databases become directly

applicable. However, according to multiple sources [18, 37], a vast

majority (80% to 90%) of data produced these days are unstructured,

which does not fit into the relational model.

To support unstructured data processing, these frameworks al-

low users to submit code written using the framework-provided

APIs. However, these frameworks’ lack of plugin support makes it

harder to implement a fine-grained access control mechanism for

user-submitted jobs with arbitrary code. One approach to sidestep

this limitation is to use “add-on” solutions like code instrumentation

with inline reference monitors (IRM) [52, 53]. IRM is a technique

to enforce security policies by injecting security checks into an

untrusted code before execution. For example, in [52], authors

proposed GuardMR to enable fine-grained access control by instru-

menting user-submitted jobs to enforce access policies in Hadoop.

This and similar instrumentation-based access control enforcement

frameworks usually assume that such instrumentation is secure

just with the support of the underlying Java virtual machine (JVM)

security policies.

In this work, we show that platform-provided sandboxing (i.e.,

security managers in JVM) alone is inadequate to prevent all the

attack surfaces. For example, Java security managers only protect

access modification of already access-protected methods or fields. It

doesn’t guard against invoking public methods, which an attacker

can leverage to evade IRM-based security enforcement. We are the
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first to systematically study and show that an attacker can abuse

platform-provided APIs to evade access controls without leaving

any traces, which we call transient attacks. Since transient attacks
are stealthy by design, defending against them is important to en-

sure a secure operation of these “add-on” solutions, whichmotivates

the following research question: Is it possible to securely enforce “add-
on” fine-grained access control policies on the user-submitted code by
throttling transient attacks?.

To address this research question, next, we systematically an-

alyze the causes behind transient evasion attacks and design a

two-layered (i.e., proactive and reactive) defense platform, to pro-

tect against themwith minimal usability and performance overhead.

Proactive security is enforced before a user’s request reaches the

data framework. On the other hand, reactive security is enforced

inside or alongside the data framework. In the proactive part, we

utilize state-of-the-art static program analysis to detect potentially

malicious user code that can be used to evade fine-grained ac-

cess control enforcement. More specifically, we use static program

analysis to screen users’ code against some predefined rules. How-

ever, some of these rules do not guarantee soundness, which is

fundamentally limited by the capability of static analysis-based

approaches. We use reactive defense as a safety-net for them. Our

reactive defense consists of binary integrity checking, static code

instrumentation-based runtime checking, and Java security man-

ager. Our binary integrity checking phase ensures the integrity of

our trusted computing base (TCB), i.e., system-specific jars. Run-

time checks guard against cases when an attacker can bypass the

proactive defense to use an adversarial coding capability. Although,

because of incurring runtime overheads, we avoided security man-

agers as much as possible; however, it was not feasible to avoid it

altogether (Details in Section 4.4).

Next, we propose a new fine-grained attribute-based access

control framework that uses Scala as the policy specification

language to support enforcing versatile policies on unstructured

data. Although there have been some efforts to define access

control models for big data analytics systems (e.g., Vigiles [53],

GuardMR [52], compared to previous work, our access control

offers the following novel contributions: i) since it modifies the

user’s submitted code to attach the access control logic to it

by leveraging aspect-oriented programming, it is framework-

agnostic, ii) it supports both map and filter primitives to support

versatile policies for filtering and obfuscating (masking) data.

We implemented our access control with the two-layered

defense on Apache Spark and named it SecureDL. We used

aspect-oriented programming to implement the access control

due to the lack of a built-in fine-grained access-control plugin

system in Apache Spark. We leveraged the two-layered defense

to ensure secure policy enforcement under API abuse attacks, as

Apache Spark supports arbitrary code execution. In addition, we

implement the proposed access control system on Hive to show

the framework-agnostic nature of it using its built-in plugin system.

Our contribution can be summarized as follows:

• We are the first to systematically show that it is possible to

evade “add-on” solutions that leverage code instrumentation

with inline reference monitors to implement fine-grained ac-

cess controls without leaving any evasion traces, which we call

transient evasion attacks.
• We propose a two-layered, proactive, and reactive defense

mechanism to protect against these attacks. We show that

a combination of static program analysis, sandboxing, and

runtime checks can be used to provide protection with low-

performance overhead.

• We provide a new framework-agnostic, fine-grained attribute-

based access control mechanism, which supports bothmap and
filter primitives for versatile policies supports. To demonstrate

its wide applicability, we integrated it with frameworks with

plugin support (i.e., Hive) and without plugin support (i.e.,

Spark) for fine-grained access control. We adopted our two-

layered defense to secure it under API abuse attacks.

• Our experimental evaluation showed that our proposed

proactive and reactive defense is effective and incurs low-

performance overhead. In a 6-node Hadoop cluster, we observe
only about 4% overhead on average on processing queries from

TPCH benchmark.

2 BACKGROUND AND THREAT MODEL

In this section, we first provide a background on Apache Hadoop

and Spark that would be useful for understanding our attacks. Then,

we briefly discuss the threat model.

2.1 Background

ApacheHadoop architecture.ApacheHadoop consists of two sig-

nificant components – a distributed file storage system (HDFS) and

a job execution framework (YARN). HDFS splits files into multiple

parts and saves them on different machines. It also replicates splits

for high availability. YARN executes user-submitted map-reduce

code in a distributed manner.

A job in the MapReduce system has a few key components. The

user defines the input data format by implementing - InputSplit with

details of data chunks, RecordReader containing details of how to

read records from these chunks, and InputFormat containing details

of how to create InputSplit and RecordReader objects. The user also

defines the computation with map-reduce functions, where Hadoop

executes the map method once for each record. The map job emits

key-value pairs, which Hadoop combines according to the keys and

invokes the reduce method once per key.

Apache Spark architecture. Like other data processing frame-

works, Apache Spark also utilizes the distributed data processing

paradigm, where there is a master node (known as driver) that
receives a data-analytic task and distributes it to various other

workers nodes (known as executors). In Spark, a user can submit

jobs written in a Turing complete language, and the system exe-

cutes the code in a distributed manner. Typically, the Apache Spark

cluster operates in two modes, i.e., i) standalone and ii) interactive.

In a standalone mode, a user can submit a job jar to a spark clus-

ter via SparkSubmit shell. The driver node accepts the submitted

jar and creates a SparkContext within itself, which prepares and

sends specific tasks to the executors.

In the interactive mode, users submit code from interactive note-

books (i.e., Zeppelin, Jupyter, etc.), which use Livy for interactive



job execution in a Spark cluster. Livy is an open-source REST inter-

face for interacting with Spark. Livy acts as a driver in this setting

and supports executing code snippets or an entire program. While

running from multiple users, Livy relies on user emulations, such

as user proxy, to emulate their capabilities.

long count = sc.textFile("users.csv")

.map(line -> line.split(";"))

.map(cols -> Integer.parse(cols[1]))

.filter(salary -> salary > 100000)

.count();

Listing 1: An example use of Spark RDDs. Here, arrows

represent the pointer from a child RDD to its parent RDD.

RDD, DataSet, and DataFrame. Resilient distributed dataset

(RDD) is a fundamental data structure in Apache Spark that ab-

stracts a collection of elements residing across the nodes in a Spark

cluster and supports a predefined set of operations on it in a fault-

tolerant manner. RDD operations are of two types: i) transforma-

tions and ii) actions. Transformations create a new RDD from an

existing one, and the actions return a value to the driver program

after running a computation on the transformed dataset (if a trans-

formation is applied). Typically, initial RDDs are created from files

persisted in a distributed file system (e.g., HDFS). Listing 1 presents

an example of Spark RDD. Given a file, users.csv with users and

their salaries, the goal is to find the number of users with a salary

of at least 100K. Here, textFile creates the initial RDD, map, and
filter are two transformations. Given an RDD, both map and filter
return a new instance of an RDD after applying the transformation

defined in the argument. count is an action that returns the count

of the elements of a given RDD. Spark remembers the transforma-

tions by creating a directed acyclic graph (DAG) of all operations.

Arrow in Listing 1 represents the parent-child relationship among

RDDs in their DAG representation. Similar to RDD, both DataSet

and DataFrames are immutable collections of distributed and parti-

tioned data [16].

2.2 Threat model

Attacker Goal: Our attacks aim to evade fine-grained access con-

trol transiently (i.e., without leaving any traces) on distributed data

analytics frameworks by abusing the platform-provided APIs.

Assumptions:We also assume that our attacker is an insider, who
is a data analytic user with lower access privilege i) can run code for
data analytics tasks and ii) has incentives to evade such access control
if the chance of getting caught is low. We consider data lakes in a

multitier organizational setting, where data access is managed by

distributed data processing engines. The access is controlled on a

need-to-know basis with a fine-grained access control mechanism.

We assume the fine-grained access controls are implemented by

leveraging code instrumentation with inline reference monitors

(IRM). We consider framework-specific runtime and jars as our

trusted computing base (TCB), which means these components

are trusted, and any tempering of them is detectable. Why TCB?
TCB provides a trust anchor for our defense. Any tempering of this

would limit the guarantees of the proposed defense (Section 4).

Attack severity: Insider attacks are a real threat in a multi-tier

organization. This is one of the leading causes of major fraud in the

telecom [9] and financial sector [45]. In theory, the threat model

assumed in this paper would enable attackers to access sensitive in-

formation by evading access controls, and that too without leaving

any traces. Additionally, this type of attack could apply to future

systems that may want to support the NIST ABAC [10] standard

where complex evaluations are needed.

3 ATTACKS ON IRM-BASED APPROACHES

Inline reference monitoring (IRM) allows a convenient way to in-

ject security enforcement into a system. In JVM-based frameworks,

Aspect Oriented Programming [40] is typically used to implement

IRMs [52, 53]. For example, GuardMR injects access control logic

(known as advice) to existing target functions or framework hooks

(known as pointcut) without changing the source code at runtime.

Thus, to evade such enforcement, it is sufficient to find ways to

access data by avoiding the IRM hooks. We leverage this insight to

craft concrete attacks against IRM-based access control enhance-

ments [52, 53] atop distributed data analytics platforms. Before

we present our attacks, we first provide the details of the IRM

implementation for both Hadoop and Spark.

3.1 Attacking IRMs on Hadoop

Vigiles [53] and GuardMR [52] used IRM-based approach to imple-

ment fine-grained access control for Hadoop. Since GuardMR [52]

is the most recent work, we will use GuardMR’s implementation to

demonstrate our attack, which can be trivially extended for Vigiles.

In GuardMR, when users submit jobs with InputFormat, Input-

Split, and RecordReader definitions, it constructs a new InputFor-

mat, InputSplit, and RecordReaders that wraps these methods with

policy enforcement. GuardMR uses aspect-oriented programming

to implement IRM to detect target methods and inject access con-

trol policies into them. Let the provided untrusted function (e.g., a

user-provided RecordReader) be ƒ , GuardMR builds a new method

ƒo such that ƒo = ƒƒe. Here, ƒe reads the original data and applies

relevant policies, i.e., filters and masks the data, then forwards the

data to function ƒ.
Scenario #1: Reading with RecordReader. To attack GuardMR,

an attacker has to figure out the original data. It boils down to

figuring out the files/splits to access by using the Hadoop-provided

APIs. It turns out that, inside a provided custom RecordReader,
the attacker can easily read the original input stream and access

the data directly, which sidesteps the policies enforced in ƒe , which
GuardMR injects. Note that such features are not preventable with

sandboxing alone without hurting legitimate functionalities. The

attack code snippet is presented in Appendix A.

3.2 Attacking IRMs on Spark

IRMs on Spark. Currently, no solutions exist to imple-

ment fine-grained access controls on Apache Spark allow-

ing arbitrary code execution. execution. Hypothetically, the

most convenient places to implement such solutions on

Apache Spark are RDD or DataFrame creation methods,

such as org.apache.spark.SparkContext.textFile(...),
org.apache.spark.sql.DataFrameReader.json(String), etc.



Because Spark data users are restricted only to use these methods

to create an initial RDD and perform various operations.Like

GuardMR, one can inject specialized transformations (i.e., map,

filter) to enforce access control on the initial RDD and then return

it so that all the user-defined operations are executed after the

policy enforcement. However, a user bypassing the execution of

the specialized transformation by retrieving the initial RDD will be

able to evade the access control enforcement. Interestingly, each

RDD contains an internal reference to its parent RDD (Listing 1)

and the initial RDD. If an attacker can access these references,

they would be able to retrieve the initial RDD before adding new

operations. The following attacks will leverage this fact in two

different ways.

val rd = sc.textFile("users.csv")

val clazz = rd.getClass

// #1. Read with "prev" field

val fld = clazz.getDeclaredField("prev")

fld.setAccessible(true)

val parent = fld.get(rd)

val initParent = fld.get(parent)

// #2. Read with "prev" method

val method = clazz.getMethod("prev")

val parent = method.invoke(rd)

val initParent = method.invoke(parent)

// #3. Read with "parent" method

val mthd = clazz.getMethod("parent", 0)

val initParent = mthd.invoke(rd, ...)

// #4. Read with "firstParent" method

val method = clazz.getMethod("firstParent")

val initParent = method.invoke(rd, ...)

Listing 2: Retrieving the reference to the initial RDD with

Java Reflection to bypass IRM-based access control.

Scenario #1: Java reflections. To obtain the private properties

of an object, an attacker can use reflections. Listing 2 shows a

demonstration of retrieving the initial RDD by accessing a private

field prev of the RDD, which contains the reference to its parent.

The prev field also has a corresponding package-private method

named prev to provide easy access within the spark framework

codes, which can also be used similarly. Some RDDs also have a

package-private method parent, which can be used to access any

parents, and a convenient method firstParent, which directly returns
the reference to the initial RDD.

val rd = sc.textFile("users.csv")

// accessing the parent pointer

// with "parent" method

val parent = rdd.parent(0)

Listing 3: Retrieving the reference to the initial RDD with

spark specific package naming

Scenario #2: Spark-specific package. If a user defines a class in

a package named “org.spark.*”, builds the jar and puts it into the

classpath. While in execution, there is no distinction between the

user’s package and those from Apache Spark. As a result, a class in

the user’s package can access all package-private methods and fields

without even requiring reflection. firstParent and prev Methods

are package-private, which means these methods are accessible

within “org.spark.*”. However, an attacker can create their class

with the same prefix to directly invoke the methods from a Spark

job (Listing 3).

4 DEFENSE METHODOLOGY

Section 3 shows that the attacks’ nature mainly depends on the

framework APIs used for AOP hooks, and the usage and functional-

ity of these APIs vary across different frameworks. Since designing

a general defense covering all the frameworks is challenging, we

focus on Apache Spark in this paper. Apache Spark represents the

group of frameworks (i.e., Spark, Hadoop, Flink, etc.) that support

code execution.

Defense goal. Given an Apache Spark task J with arbitrary code,

detecting if it is malicious is undecidable, in general [26]. To avoid

this pitfall, instead of detection, our goal is to prevent transient

evasion with minimal performance overhead without hurting legit-

imate uses. Toward that goal, we will first systematically analyze

the platform APIs that offer the primary attack surface and show

how those surfaces can be nullified. Note that this is the first stab
towards protecting distributed data analytic systems from a powerful
adversary like this, which might stimulate future research.

4.1 Attack surfaces in Spark

In this section, we discuss the APIs of Apache Spark that might

offer attack surfaces for transient evasion. To securely deploy and

maintain secure operations of IRM-based access control, these APIs

need to be restricted.

(1) Restricting reflection on RDDs. Java reflection API allows

users to access an object’s private properties (fields and meth-

ods). Specifically, an attacker can use Java reflection APIs (at-

tack #3) to bypass the SecureDL access control protection. An

intuitive approach to protect against reflection is to sandbox the

spark job execution with Java security manager [52]. However,

security managers can only protect against access modification

and retrieving declared methods or fields. However, it does not

guard against invoking public methods.

When Spark’s internal Scala classes are compiled into Java class

files, all the package-private methods become public. Because

of this, it does not require performing any access modification

while invoking any of the prev, parent, firstParent methods in

Listing 2. Thus, a security-manager-based solution is insuffi-

cient, and a more robust sandboxing mechanism is required to

prevent this attack.



(2) Preventing framework-specific package declarations. In

attack #4, we see that an attacker can define “org.spark.*” pack-

age to directly invoke prev, parent, firstParent methods in scala.

Spark jobs must be vetted against such manipulations.

(3) Preventing dynamic class loading. Java allows users to load

a class dynamically, given a class name. This allows the user

to load any class in the current classpath. This capability can

potentially enable an attacker to execute non-screened codes,

including code instrumentation.

(4) Preventing to override security managers. A security man-

ager is a class that defines the security policies of an appli-

cation. It has an implementation of several check* methods,

such as checkPermission, checkWrite, and checkExec. These

methods determine whether particular actions, such as writing

a file, are permitted in the current running Java virtual ma-

chine instance. Security managers are typically used to build a

sandboxed/protected execution environment. Interestingly, a

user can replace an existing security manager with code if it is

not configured correctly. This replacement mechanism can be

leveraged to bypass the existing protections. To build a secure

system, replacing existing security managers and setting up

custom policies must be disabled.

(5) Preventing native codes and libraries. One can use native

codes or libraries to enable any of the features restricted in

the Java layer. Hence, loading native libraries and performing

native API calls must be flagged.

Note that, we consider the APIs for system command execution

and file/read writes to be out of the scope, since, attacks leveraging

these APIs for out-of-the-ordinary operations would leave strong

signatures for detection [28]. Thus it might not be in the best interest

of the attackers who do not wish to leave traces to use these APIs.

4.2 Defense overview

In this section, we propose a combination of proactive and reac-

tive mechanisms to restrict the adversarial coding capabilities by

leveraging Spark APIs discussed in Section 4.1 to ensure an auto-

mated secure operation. In theory, we can block all the executions

of problematic APIs and trivially protect the system. However, the

question that needs an answer is: “Is it possible to guarantee a secure
prevention of adversarial capabilities with minimal overheads without
denying services to legitimate users?”

In this section, we answer this question affirmatively. Intuitively,

the overhead would be minimal if all adversarial capabilities could

be prevented proactively by analyzing the submitted code before

execution. Therefore, we use static analysis to prevent most of the
attack surfaces (or APIs) and avoid costly runtime checks (i.e., security
managers) as much as possible. In our design we first categorize the

attack surfaces into two groups, i) blockable attack surfaces, and ii)
non-blockable attack surfaces. An attack surface is blockable if all

of its instances can be blocked since this does not appear in typical

usage scenarios. Simple static analysis methods can be designed

to proactively detect and block them with soundness (no miss de-

tections) and (almost) completeness (no false alarms) guarantees.

However, not all attack surfaces are of this nature. For example,

Apache Spark uses reflection APIs in its regular operations, thus

blocking it altogether infeasible. We call such attack surfaces non-

blockable. For non-blockable attack surfaces (APIs), we design static

analysis methods to identify their malicious usage for proactive de-
tection. However, existing static analysis techniques for API misuse

detection are known to be unsound (missed detection) and incom-

plete (generates false alarms) [41, 50]. Missed detections will enable
attackers to evade the defense and false alarms will deny services

to benign users. Thus, our goal to protect non-blockable attack

surfaces proactively, we use “soundy” (means mostly sound [42],

but no guarantees) dataflow analysis framework with fewer false

alerts. For this case, we also employ a reactive fall-back mechanism to
block adversarial uses that evade proactive defense. The goals of the
reactive mechanism are as follows, i) ensure a sandboxed execution
of the user-submitted code, and ii) block abuse of non-blockable

APIs that evaded proactive safety checks.

4.3 Proactive defense

In this section, we present the proactive agent, which uses static

code analysis to screen the user-submitted code. Screening is done

by checking the code against some well-defined rules. We have two

types of rules, i) rules for blockable attack surfaces, and ii) rules for
non-blockable attack surfaces, which we discuss next.

4.3.1 Restricting blockable attack surfaces. If an attack sur-

face does not often appear in regular use cases, we prescribe block-

ing that as a whole, which we refer to as the blockable attack surface.

We use regular expressions to implement these rules for sound and

(almost) complete detection.

Restricting framework-specific packages. For security purposes,

Apache Spark intentionally put some of the framework’s inter-

nal APIs as package-private, so that these APIs are hidden from

external users. As we discussed in Section 4.1, a user can define

classes with the framework-specific package structure with a prefix

of “org.apache.spark”, so that the framework internal APIs become

accessible. Therefore, to prevent the adversarial use of these capa-

bilities, we block jobs that leverage this capability to invoke the

APIs to access the parent objects of an RDD (e.g., “prev”, “parent”)

as demonstrated in Listing 3.

Restricting permissive system APIs. We also restrict users to in-

voking the following system APIs (1) to load classes dynamically;

(2) to override the security manager; (3) using native codes/libraries,

etc. One might argue that an attacker could use third-party libraries

that are not covered by our defense. However, in such cases, the

attacker is also needed to embed the libraries within her submitted,

which would use the standard APIs we cover.

In a real environment, there might be instances where blocking

specific instances of the above cases is infeasible. We design a

allowlisting mechanism (Section 4.3.3) to handle these cases.

4.3.2 Restricting non-blockable attack surfaces statically. It

is infeasible to block all the permissive system APIs as a whole. For

example, several machine learning libraries benignly use reflection

APIs for optimizing job performance. Therefore, to prevent the

adversarial use of these capabilities, it is infeasible to block all of

their usage. We handle the reflection APIs as follows.



Bock

Get
po : get(obj),  :  is an RDD, V : {} |  ⇝ po ,∀ ∈ [1, |V|]

ƒ  ε V then true ese false

, noke
po : invoke(obj, _),  :  is an RDD, V : {} |  ⇝ po ,∀ ∈ [1, |V|]

ƒ  ε V then true ese false

ƒ Get or noke then true ese false

Figure 1: Blocking the use of reflection on RDD objects. Here,  ⇝ po represents an influence of an object  on the program

point po. V represents the set of all such objects.

(1) We use security managers to block unusual cases of reflection

APIs (Section 4.4.1). This is because security manager-based

sandboxing is sound by design.

(2) However, Java security managers are inadequate to guard

against invoking public methods, which an attacker can lever-

age to evade IRM-based security enforcement (Attacks 2, 3, 4

in Listing 2). If it is infeasible to use security managers, we

leverage existing advances in static dataflow analysis-based

API abuse detection [41, 50] to proactively detect malicious

use of these APIs. To minimize the impact of false positives for

most common usage, we leverage a allowlisting mechanism

discussed in Section 4.3.3.

(3) If it is infeasible to model the abuses with dataflow analysis,

we allowlist (Section 4.3.3) all the common uses of the API and

block all the others that are not allowlisted.

Note that, the static dataflow analysis does not guarantee sound-

ness. We rewrite the user-submitted Spark jobs to ensure runtime

checks for the cases that are missed during our proactive phase. If

misuse is detected, our runtime fallback mechanism blocks further

execution, which guarantees the security of the framework (Sec-

tion 4.4.2). Next, we show an example of designing static dataflow

analysis to detect malicious uses of a system API in the light of

reflection APIs.

Detection of reflection API abuses. In Section 4.1, we observe that

to obtain the private properties of an object, we need to invoke

java.lang.Object get(java.lang.Object) on the corresponding field

by using the object of interest as the parameter. Similarly, to in-

voke methods on an object, it is required to invoke java.lang.Object
invoke(java.lang.Object,java.lang.Object[]) on the corresponding

method by using the object of interest as the first parameter. Java

security managers cannot sandbox the execution of the “get” and

“invoke” methods on public properties of a class (cases 2, 3, 4 in

Listing 2). Thus, we use backward data-flow analysis to detect and

block jobs that leverage these APIs to access the parent objects of

an RDD. Specifically, our backward data-flow analysis identifies

whether an RDD instance passes as an input parameter to these

methods, which is formally defined in Figure 1.

Backward dataflow analysis implementation. Since imple-

menting a new dataflow analysis is not our main focus, we use

the interprocedural backward data-flow implementation of Cryp-

toGuard [50] for this purpose. CryptoGuard’s implementation is

demand-driven and known to produce fewer false alarms, which

is suitable for our case. However, like all the other static dataflow

analysis frameworks, it does not guarantee soundness. Note that to
improve the performance (i.e., improve robustness or runtime perfor-
mance, reduce false positives or false negatives, etc.), CryptoGuard
can be replaced with any other competing solutions [41, 51], which is
beyond the scope of this work.

4.3.3 Extending the trusted computing base (TCB). Identify-

ing the code that is controlled by a malicious user is instrumental

to provide seamless service to the legitimate users. For example,

various third-party libraries use Java Reflection APIs to offer con-

venient utility. If the code analysis engine wrongfully rejects a job

with Java Reflection API invocation, a legitimate user using such

libraries will be impacted. To solve this problem, we offer library

allowlisting service. Our code analysis engine will skip the screening
of a jar or class binary if it is allowlisted. We created a list of com-

mon libraries that are allowlisted by default, which is considered

to be part of our trusted computing base (TCB). The list can be

extended or modified by an administrator. To allowlist a jar, first,

we compute the hash of the jar and store it. Then we unzip it and

compute the hashes of each of the class files (or native codes) and

store them in a database. During the static analysis of a jar, the

analyzer first creates a hash of the jar and looks up the database

to see whether it exists in the allowlist or not. If found, then the

analysis engine skips it. Otherwise, it unzips the jar and creates

hashes for each of the class files from inside the jar. If the hash of a

corresponding class is not found, then the class is included in the

static analysis, otherwise, it is skipped. To improve the performance,

our analysis engine can also maintain a cache of the analyzed code.

If the analysis result of a jar or a class is available in the analysis

cache, then we could retrieve the analysis result from the cache

and skip the reanalysis.

4.4 Reactive defense

The goal of our reactive defense is two folds, i) ensuring the integrity
of our trusted computing base (TCB) and ii) restrict non-blockable
attack surfaces that either escaped or not covered by the proactive

defense. The reactive defense has two types of components - i) a
static component, that matches the cryptographic hashes of the TCB

before running a job, and ii) a dynamic component, which works

as a fallback for the non-blockable attack surfaces. The dynamic

component consists of two parts (1) Java security manager-based

sandboxing of API usage to restrict abuse cases, and (2) rewriting

the user-submitted job with runtime checks for the APIs that are

not sandboxed.

4.4.1 Restricting APIs with security managers. JVM ecosys-

tem offers security managers to secure sandbox untrusted code.

Given the context (call trace with invocation parameters) of a sys-

tem call invocation, security managers can block its execution (by

throwing exceptions), if the operation is not permissible. Permission

represents access to a system resource. The list of permissions that

can be checked by using security managers can be found here [12].

We use security managers to block the following reflection per-

mission, i) accessDeclaredMembers – querying public, protected,

private properties of a class, ii) suppressAccessChecks – accessing



public, protected, private properties of a class, and iii) newProxy-
InPackage – creating proxy instances of a nonpublic interface in a

given package. By checking the invocation parameters, we block all

these permissions if they are used to access RDD properties. This

effectively blocks the attack #1 in Listing 2.

4.4.2 Defense with instrumentation-based runtime checks.

As explained in Section 4.3.2, not all reflection API uses can be re-

stricted with security managers. To detect those cases, we designed

static-dataflow analysis-based proactive method (Section 4.3.2).

However, since dataflow analysis is not “sound”, it is possible to

craft attacks to evade them. Thus, to guard against this, we intro-

duce a runtime check just before the invocation of these APIs. If it is

invoked on an instance of RDD or a sub-class of RDD, we generate

a runtime exception.

5 A NEW ACCESS CONTROL FRAMEWORK

WITH ENHANCED POLICY LANGUAGE

Here, we present a new framework-agnostic fine-grained access

control with enhanced policy language, which can handle both

structured and unstructured data.

Our new access control features.Although there have been some

efforts to define access control models for big data analytics systems

(e.g., Vigiles [53], GuardMR [52]), compared to previous work our

access control mechanism
1
enables three benefits which were not

achieved simultaneously before. These are: i) our access control
policies are framework agnostic, ii) our policy language supports

both map and filter primitives, which enables to write specialized

filter and map tasks and iii) our policy language allows Scala code

to support the enforcement of versatile policies for map or filter
tasks which are specially suited for unstructured data. This means,

that by using our filters, one can define arbitrary filtration on arbi-

trary attributes. However, our map primitives are limited to regular

language, which is incapable of expressing any rule requiring mem-

ory (or state). Although the capability can be trivially extended,

we believe regular language is sufficient enough to capture most

real-world scenarios.

5.1 Access control framework components

We represent the input data as a dataframe. Dataframe is a struc-

tured data storage that stores data in rows and columns. Formally,

an input data set Dd =< d
�

D
�

, C, T > consists of an unique

identifier (e.g., filename, table name), column definitions, and an

ordered set of tuples. This abstraction is very powerful and en-

compasses a wide variety of data types. Intuitively, a dataframe

directly maps to a relational table. In addition, we can represent

any non-relational data using this abstraction. For example, this

abstraction can be used to model a text file where we assume each

line is a tuple of a single element and can assume the name of the

element is ‘text’. In addition, we can model arbitrarily nested Json

data, where each attribute of the input Json becomes an element of

the tuple. In reality, a wide variety of popular data analytics systems

represent data in this format, such as Spark [16], Pandas [48], R[31],

etc. Furthermore, we can represent nontextual, such as images, data

into dataframes by keeping a column of binary data (BLOB in a

1
closely follows NIST ABAC guideline [10]

relational database). This simplifies data processing since we can

efficiently manage meta-data as well.

Policy in our system defined as P = 〈ℐ, A,ℳ, ƒ 〉, where

�

Dd, , A
�

is a boolean function for deciding whether a given

dataframe Dd , a user , and set of attributes A, the policy is appli-

cable or not,ℳ
�

t, , c
�

is set of masking functions, ƒ
�

t, , c
�

is

user provided boolean function for limiting view of the data applied

to each tuple t ∈ Dd using user information  and system context

information c (e.g., IP address of the request).

A masking or obfuscation function m in our system takes in-

put of a type of data, modifies it, and then returns same type of

data with limited information (i.e. type
�


�

= type
�

m
�


��

). Let

X
�

rege, s
�

be a function that takes a regular expression and a

string value and returns the indexes of string regular expression

matches, S
�

mtches, s, pttern
�

be a substitution function

that takes the regular expression matches, original string, and a pat-

tern, return the string with replaced pattern in matching location.

For example, a regular expression-based US phone number masking

function that only returns the last four digits can be expressed as

nde = X
�

‘?d3?−|d3 − d4′, s
�

mp
�

s
�

= S
�

nde, s, ‘ ∗ ∗∗ − ∗∗∗ −dddd′
�

Algorithm 1 Policy Enforcement

Ensure: 
�

Dd, , A
�

= True ▷ Ensure that policy is applicable

1: procedure Policy Enforcement(P, , c,Dd)

2: ▷ Apply policy P for a request for data frame Dd
submitted by user  given the request context c

3: D′ ← ∅
4: for all t ∈ Dd do

5: if ƒ
�

t, , c
�

= True then

6: D′ ← D′ ∪M
�

t, ,m
�

7: Return D′

For efficiency reasons, we define masking functions specific

to a column. Let M
�

t, ,m
�

be a column specific masking func-

tion that applies masking function m on column  of tuple t,
i.e. M
�

t, c,m
�

= m
�

t.
�

. Finally, in M we have ordered sets

of masking functions potentially for each different column,ℳ =

{M1,M2, ...}
In summary, given a policy P,user  and date frame Dd , first

the system checks whether 
�

Dd, , A
�

returns true (i.e., Line 0

in Algorithm 1). If that is the case, for each tuple t ∈ Dd , it checks

whether ƒ
�

t, , c
�

returns true (i.e., Line 5 in Algorithm 1). Then

for all t ∈ Dd : ƒ
�

t, , c
�

= True, it adds the masked version of

the tuple t to the resulting data frame (i.e., Line 6 in Algorithm 1).

Since our system allows arbitrary scala code for functions , ƒ ,m,

it can represent any existing role-based (RBAC) [35] and attribute-

based access control policies (ABAC) [38].

Since our system allows us to specify ABAC policies using the

Scala programming language, any user and data attributes can be

combined with programming languages to enforce very sophisti-

cated security and privacy policies. For example, using a custom-

defined function defined on images, a policy that can redact human

faces automatically can be defined in our system. In other words, a



mask function M defined over images can use an ML subroutine to

detect the human faces and replace the detected pixels with black

ones to redact human faces. We would like to stress that our policies

are generic enough to represent any ABAC policies defined on the

dataframe abstraction. As we discussed above, this abstraction can

represent policies at any granularity for relational, semi-structured,

and unstructured data.

5.2 Implementation using AOP in Spark

We implement our access control on Apache Spark and name the

system as SecureDL. Our goal is to keep the enforcement system

as transparent as possible from the data user’s point of view, i.e.,

without introducing new APIs. All existing jobs written using cur-

rent API calls must work in our new system. To implement the

fine-grained access control in this manner, we have two options -

(1) we could rewrite the distributed data analytics system with the

necessary enforcement codes, and build our version of Spark (i.e.,

embed the reference monitor inside the system), (2) use an inline

reference monitor (IRM) (i.e. we attach our enforcement logic at

run-time) [33] .

For our system, we chose the IRM approach because changing

and rebuilding existing systems is difficult and time-consuming.

Simply, given a policy P, user-submitted job j, our policy rewriter

will rewrite the job j into j′ so that the policy is enforced. For a

policy P, it maps masking operations with a map transformation

and filter operationswith a filter transformation. To implement IRM-

based policy enforcement in our system, we choose Aspect-oriented

programming (AOP). We defer the discussion of implementation

details to Appendix B. In Section 3, we discussed several concrete

attacks that can evade our IRM-based implementation in Spark. We

use the proactive and reactive defenses discussed in Section 4.2 to

defend against evasion attacks discussed in Section 3.

Zeppelin

LivySpark Driver

Executor Executor Executor 

Policy 
Dispatcher

SparkSubmit

Proactive Agent Reactive Agent

Spark Cluster

 #1 #2 #N

Users

Filter Cache
(Redis)

Drivers

Executors 

Admin User

Figure 2: System overview of our policy enforcement in

Apache Spark with proactive and reactive defenses. Here

proactive agents, reactive agents, policy dispatchers, and fil-

ter caching are the new components proposed in SecureDL.

System overview. In this section, we provide an overview of the

whole system with defense in place for Apache Spark. Figure 2

shows the system overview. In this system setup, data analytics

users can submit tasks through SparkSubmit client and the interac-

tive Zeppelin server
2
. Admin users define attribute-based policies

and send them to the policy dispatcher. Policy dispatcher maps the

2
Apache Zeppelin is a "Web-based notebook that enables data-driven, interactive data

analytics and collaborative documents with SQL, Scala and more" [7]

policies into map and reduce transformations. It bundles all data

masking operations into a map and arbitrary data filtration logics

into a callback method, which can be invoked from a filter. Then, it

sends the maps into Spark drivers and the callback method binary

to a distributed cache implemented with Redis. Along with the map

and filter code, this callback method binary is loaded in both drivers

and executors. In Figure 2, proactive and reactive agents are em-

ployed to guard against bypassing this policy enforcement during

data analysis. The proactive agents analyze the submitted code and

proactively rejects a job if detects any bypass attempts. The reactive
agent i) sandboxes the user-submitted code execution by using the

Java security manager and ii) rewrites the user-submitted code by

instrumenting runtime checks on certain system API invocations to

ensure their secure use. To show the framework-agnostic nature of

the proposed access control method, we also present a plugin-based

implementation with Apache Hive in Appendix C.

6 EVALUATION

We performed extensive experiments to quantify the overhead

of different components in Apache Spark when our fine-grained

access control and defense mechanism is in place. In this section,

we present our experimental results.

Cluster configurations. We ran experiments on Hadoop Spark

clusters with one master node, a few worker nodes, and one service

node. All these nodes are running inside a virtual cloud network,

which is located in a cloud availability zone.We ran our experiments

in Oracle Cloud Infrastructure (OCI) and each node in the cluster

is of type VM.Standard2.4 having 4 OCPU, 60GB of main memory,

running Ubuntu 18.04 OS. We also mount a block device disk of

size 1TB on each instances. We are using Hadoop version 3.3.0,

Spark 3.0.1, and Livy 0.8.0 snapshot (HEAD 4d8a912). Also, our

trusted computing base (TCB) contains 274 jars released in the

org.apache.spark, org.apache.hadoop, org.apache.livy, and
org.scala-lang groups and their dependencies.

Spark and HDFS configurations. In our setup, the HDFS data

directories, such as dfs.datanode.data.dir, dfs.namenode.name.dir,

hadoop.tmp.dir are pointed to the directories in the mounted block

device. For simplicity, we keep the replication factor 1. In this setup,

we need on average 1 min 53 sec to copy a single file of size

1GB from local disk to HDFS with hadoop fs -copyFromLocal
command. In addition, we also configured memory and virtual

cores for Yarn and Spark-based on the number of nodes in the

cluster and per node available resources. We defer the detailed

discussion to Appendix D.

6.1 Performance of static components

In this section, we present the performance analysis of the static

components of our system that do not depend on the dataset or

computation. Our evaluation answers the following questions.

• What is the overall overhead of the static components?

• What is the accuracy of proactive defense? Does it block legiti-

mate cases?

Performance overhead of static components. Our proactive

defense, jar rewriting, runtime jar instrumentation with AspectJ,

and jar integrity checking are the static components of the sys-

tem. Since the proactive screening and jar rewriting can be done
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Figure 3: HiBench performance without any enforcement, with java agent enabled, and with integrity checking

offline prior to running the data analytics tasks, here we report

the performance overhead of Jar instrumentation with AspectJ to

load access control policies and integrity checking for the TCB. We

used HiBench [11] benchmarks to see the performance overhead of

these components on standard workloads. In Figure 3(a) we show

the overall execution time of 13 SparkBench workload. We run

the experiments on a Hadoop/Spark cluster with 5 nodes (1 master

and 4 workers) nodes. We observe that AspectJ instrumentations

have a median overhead of 4.84% with Q1 2.9% and Q3 6.71%
compared to the base case. Similarly, we observe that jar integrity

checking has median overhead 4.28%with Q1 4.06% and Q3 6.00%
compared to the AspectJ instrumentation case. Finally, we exam-

ined the overhead of varying the input data size on two workloads.

We used different scale profiles defined in HiBench to generate

inputs of varying sizes. Specifically, we use tiny, small, large,
huge, and gigantic profiles on SparkScalaBayes (in 3(b)) and

RandomForest (in 3(c)) workloads. For Bayes workload, we see lin-

ear growth over the size profiles with AspectJ overhead averaging

5.15% for AspectJ instrumentation, and with jar integrity check-

ing we observe additional 3.12% overhead. In contrast, for random

forest workload, we observe exponential growth in execution time

with overhead averaging 3.55% for AspectJ instrumentation and

2.06% additional overhead for jar integrity checking. In summary,

we observe an almost constant overhead in instrumenting and jar

integrity checking, which was expected.

Accuracy of proactive defense. To check the soundness and preci-

sion of our proactive analysis on real-world code, we collected 2120
repositories from GitHub that use Apache Spark. We specifically

searched with keywords ‘spark example’, ‘spark tutorial’, ‘spark

learning’, etc. We found 637 repositories use maven [3] as a build

tool. We focused on projects utilizing maven because in maven,

the build script (pom.xml) is written in XML following a predefined
schema, whichmakes it easier to parse the project structure and find

expected output binaries. Among 637 repositories, we successfully

built 417 (65.46%). From these repositories, we found 247 analyz-

able jar files. We excluded jar files that contain dependencies, i.e.,

uber-jar [17], also known as the fat jar. Because, during the uber jar

generation process using maven shade plugin [4], some class bina-

ries are changed. So, an allow listing strategy based on class binary

hash will not work in such a specialized scenario. The programmer

needs to build hashes of custom class binaries to make our proactive

analysis work in this scenario. In addition, we also excluded some

repositories (2) that extended the Apache Spark framework by copy-

ing a large portion of the original code and rebuilt core jars, which

is highly unusual. Among the analyzable jars, we found one or more

issues in 21 jars. In 12 jars, our proactive analysis found attempts to

define classes in org.apache.spark package. In these cases, pro-

grammers defined some classes under org.apache.spark, such as

copying examples from org.apache.spark.examples package. In
7 jars, we observed invocation of Class.forName. In most cases,

programmers load drivers of different database servers, such as

MySQL and PostgreSQL, which were used to load data from/to

Apache Spark. Also, in 8 jars, we have observed network class

access, such as java.net.Socket, java.net.URL. In this case, pro-

grammers are trying to connect to a different host for downloading

or uploading data.We conservatively blocked APIs for network access
since this can be leveraged to temper with our TCB to step out of our
threat model. Note that our allowlisting service can be used to exclude
any legitimate uses from blocking. Among cases where the proactive

analyzer failed to analyze the built jar, the most common reason is

the internal error of the soot framework [15], which we used for

building the analyzer. Using an updated soot library can potentially

help with these failing cases.

6.2 Overheads of dynamic components

Our access control mechanism and reactive defenses are enforced

at runtime, which depends on the dataset and the nature of the

computation. In this section, we perform several experiments to

extensively evaluate the overhead associated with them. Our ex-

perimental evaluation answers the following research questions.

• How does the overhead of our attribute-based access control

and reactive defense change over the baseline with the size of

the dataset?

• What is the impact of the number of computing nodes?

Experimental setup. For this experiment, we use TPCH bench-

mark
3
. We run TPCH queries on CSV data using Spark. More specif-

ically, we store the TPCH tbl tables in HDFS as CSV files, load

them as dataframes in Spark, and run the TPCH queries on them.

For these experiments, we set up two sets of policies

(1) Masking on phone columns. We show the last 4 digits of 12
digits on the phone column of customer and supplier table

of TPCH.

3
http://www.tpc.org/tpch/
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Figure 4: Overhead of access control and security manager for TPCH queries on different input size.

(2) Masking on comments columns. We use regular expressions

to detect phone numbers and email address inside the com-

ments column of all the tables of TPCH and replace with

defined patterns. We use regular expression \(?\d3\)?(-|
)\d3-\d4 to detect phone numbers and replace with ‘***-
***-dddd’ pattern, where d represents a digit in the input

string. This masking essentially shows only last 4 digits of

the phone number. Similarly for email addresses, we use

the regular expression \b[ˆ\s]+@[a-zA-Z0-9][a-zA-Z0-9-
_]{0,61}[a-zA-Z0-9]{0,1} \.([a-zA-Z]{1,6}|[a-zA-Z0-
9-]{1,30}\.[a-zA-Z]{2,3})\b to mask emails in the form

of *@*c, to only show the last character of the email address.

Specific details of the policies are listed in Appendix E.

Impact of the dataset size on overheads. In this experiment, we

generate and load 10GB, 20GB, 30GB, 40GB, and 50GB of TPCH

data in HDFS and run queries 2, 6, and 14 on them. To measure the

runtime overhead, we used the following four settings, i) without

any access control policy enforcement, ii) with phone masking

policies, iii) with phone and comment masking policies, iv) with

phone masking and security manager enabled.

In Figure 4 we illustrate the execution time of these queries.

For query 2 (Figure 4(a)) we observe average overhead of 12.85%
with standard deviation 8.17% for phone number masking. With

security manager enabled we observe mean overhead of 11.44%
with standard deviation 5.43%. Finally, phone and comment mask-

ing together, we observe similar average overhead 15.03% with

standard deviation 4.48%. For query 2, apart from few extreme

cases, we observe overhead around 16%. Now, for query 6 we ob-
serve mean overhead of 2.21% with standard deviation 1.42% for
phone masking. With security manager enabled we observe mean

overhead of 2.54% with standard deviation 2.56%. Finally with

phone and comment masking we observe mean overhead of 1.15%
with standard deviation 0.94%. For query 6 our overhead is in and

around 2%. For query 14, we observe average overhead of 3.72%
with standard deviation 1.4% with phone masking. With security

manager we observe average overhead 3.33% with standard devia-

tion 1.24%. Finally with phone and comment masking we observe

mean overhead 2.54% with standard deviation 1.55%. Similar to

query 6 we observe overall overheads of around 2% in query 2. To
summarize, we do not observe any variation in runtime overhead

over the baseline with the increase of the dataset size. However,

the overhead is highly dependent on the type of query and the poli-

cies we enforce. In our case, the query 2 has complex inner query,

several joins, and order by clauses, resulting noticeable overheads.

In contrast, query 6 and 14 has complex aggregation and simpler

joins, so the overheads are significantly lower.

Impact of computing nodes on overheads. To observe the over-

head in varying computation capacity, we create a cluster with

varying number of worker nodes, then load 30GB of TPCH data,

and run queries 2, 6, and 14. We created cluster with 3, 4, 5, 6, and
7 Hadoop/Spark nodes and used one node as master and remaining

as workers. We utilize equations outlined in Table 1 to calculate ex-

ecutor resource-related configurations. For query 6we have around
9.76% overhead with phone masking, which gradually decrease

to about 1.77% for 5 nodes cluster and again increase a little bit

in 7 nodes cluster. We observe a similar pattern in query 14. Our
hypothesis is increased computation capacity increases the paral-

lelization in the cluster, hence, the overhead of our map and filter

execution decreases. At some point, the overhead of parallelism,

i.e. network and io overhead of exchanging data among nodes, will

diminish this computational overhead. Furthermore, a very impor-

tant point to emphasize is that Spark always greedily allocates all
available memory, whether it is needed or not. For query 2 on phone
masking, we observe that overhead increases 1% to 9% for phone

masking with increasing capacity. We observe a similar pattern for

the combination of phone and comment masking as well.

7 DISCUSSION

The soundness and accuracy of proactive analysis have significant

security and usefulness implications. In theory, restriction (and false

positives) comes with a price in usability. However, considering the

difficulty of abuse detection, we believe this is a reasonable tradeoff.

Many real-world systems (e.g., Lua sandbox [13] and WeChat mini-

apps [54]) that allow execution of non-trusted code rely on API

restrictions. Our evaluation on 247 real-world jars indicates a low

possibility of blocking legitimate uses. However, if our system raises

a false alert for a jar or class file, a system admin can allowlist it

and exclude it from analysis to ensure an uninterrupted operation.

Our manual analysis of real-world projects did not discover any

new suspicious features that our analysis might have missed. To
further evaluate the detection capabilities, we created a set of 15
attacks, including all the attack scenarios discussed in Section 3.2. The
evaluation shows that our proactive analysis successfully detected
all the cases. Guarding against the adversarial use of reflection APIs

through static dataflow analysis is the unsound part of our system.
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Figure 5: Overhead of access control and security manager for TPCH queries in different sized clusters

Our jar re-write-based runtime checks theoretically guarantee their

prevention.

8 RELATEDWORK

Access control methodologies for data management systems.

Access control methodologies have been applied to data manage-

ment systems over the years ranging from relational databases

(e.g., see discussion and references in [21]) to non-relational sys-

tems (e.g., [14, 20, 30, 36, 49, 52]). Compared to all these works,

SecureDL has the only framework-agnostic fine-grained attribute-

based access control framework with data masking and filtering,

which can support policy specification with Scala code snippets to

handle any type of structured/relational data.

Another relevant data access control mechanism is purpose-

aware access control (PAAC), where we define and enforce access

control policies based on the purpose of the computation. PAAC

and ABAC are complementary to each other. GuardSpark++ [55]

implements PAAC in Spark SQL for structured data (our access

control framework works on both structured and non-structured

data). It utilizes Spark’s internal SQL query optimization engine

‘Catalyst’ and enforces purpose-aware policies between analysis

and optimization states.

Commercial solutions.There are several commercial open-source

projects (i.e., Apache Ranger) that offer access control atop dis-

tributed data analytics platforms. Intrinsically, the capability of

Ranger is limited by the capability granted by the plugin system

of the host framework. Since Apache Spark does not have a fine-

grained access control plugin system, Ranger can not support it

directly. All large cloud vendors have their own version of data

analytics and access control mechanisms. For example, an Amazon

Web Services customer can load CSV data in an s3 object store

and run a HiveQL query using a service named Athena [8]. Access

control in this scenario will be equivalent to the access control

settings in the underlying data store s3. These solutions revolve

around solving the access control on structured data.

Static code analysis for vulnerability detection. Static code

analysis has been extensively used to detect API misuse vulnerabili-

ties Java code [22, 23, 32, 34, 41, 43, 46, 47, 50, 59]. Most of the work

focuses on detecting system-level API misuses [22, 32, 34, 41, 46, 50],

such as SSL/TLS [34, 50], Cryptographic APIs [32, 41, 50], APIs

for fingerprint protection [22], Android Inter-app communication

APIs [23], etc. Some of the recent works focus on non-system APIs

too [43, 59], such as cloud service APIs for information storage [59],

Creditcard information processingAPIs [43], etc. In this scenario, no

missed detection is expected-but-not-critical. In our case, a missed

detection has a serious consequence on the overall security guaran-

tee. Consequently, we employ runtime checks to detect and block

such cases.

9 CONCLUSION

Typically, fine-grained access controls are enforced using aspect-

oriented programming on top distributed data analytics platforms

that do not have any plugin support. In this work, we show that

it is possible to evade such access-checking mechanisms without

leaving traces, which we call transient evasion attacks. Next, we

designed a two-layered defense to enable secure enforcement under

such attacks. We are the first to utilize the program analysis to com-

plement the existing security features and use code rewriting to

design the defense mechanism. We also propose a new framework

agnostic fine-grained access control framework with enhanced

policy language. Finally, we leveraged our defense mechanism to

securely implement the proposed access control on top of Apache

Spark (which we named SecureDL).We show SecureDL’s effective-

ness with a prototype implementation. Our extensive experimental

evaluation shows that the SecureDL has a low overhead while

securely enforcing attribute-based access control policies.
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A ATTACK ON GUARDMR

Following is the code snippet that evades GuardMR protection on

Apache Hadoop.

class MalReader extends RecordReader {

public void initialize (...) {

List<FileSplit > splits = (List<FileSplit >)

fileInputFormat.getSplits(job);

for(FileSplit split : splits) {

final FutureDataInputStreamBuilder

builder =

file.getFileSystem(job)

.openFile(split.getPath());

FSDataInputStream fileIn = FutureIOSupport

.awaitFuture(builder.build());

long start = split.getStart();

long end = start + split.getLength();

int length = 1024 * 1024;

byte[] buffer = new byte[length];

long position = start;

while (position < end) {

position += fileIn.readBytes(position ,

buffer , 0, length)

// Access the plain text values

}

}
}

Listing 4: Reading file splits directly with a custom

RecordReader in Hadoop to sidestep GuardMR.

B SPARK AOP DETAILS

We create pointcut for all the user-facing methods in Spark

that are used to read files and create RDD or DataFrame, such

as org.apache.spark.SparkContext.textFile(String, int),
org.apache.spark.sql.DataFrameReader.json(String), etc.

An Spark data user can utilize these methods to create an initial

RDD and then perform various operations. We find these methods

by searching statements that instantiate RDD and its subclasses

in the Spark source code. We then look for public methods that

use these methods. We attach AspectJ javaagent to all Spark’s Java

processes by modifying the shell script, spark-class. In addition,

to communicate with other services, such as policy service, we

need to initialize some service clients in spark context. So, we

implement and attach a SparkListenter. Specifically, we mod-

ify these five configurations - spark.driver.extraJavaOptions,
spark.executor.extraJavaOptions,
spark.driver.extraClassPath,
spark.executor.extraClassPath, spark.extraListeners.

We use @Around() and related annotations from AspectJ

to attach policy enforcement code to data reading methods.

One such example is listed in Listing 5. Here we define a

method policisOnTextFile with an @Around("execution(*
org.apache.spark.SparkContext.textFile(String, int))")
annotation, which signals AspectJ to attach the policisOn-
TextFile method around SparkContext.textFile method. In

other words, any time the spark context method is executed we first

receive the call in our policisOnTextFile method. This method

take as argument ProceedingJoinPoint class and return either

a modified RDD with access control enforcement or raise error

due to insufficient access permission. We get all the original input

parameters, such as the file path, using getArgs method of the

joint point class. Next, we decide whether the user has access to

the file using file metadata information. If the user has access to

the file, we execute the proceed on the joint point. This creates

the initial RDD or DataFrame. To emphasize, this does not actually

execute the read access; instead, it creates a job in a DAG that will

be executed later. Now, we modify this RDD or DataFrame with

access control policy implementation.

@Around("execution(* org.apache.spark

.SparkContext.textFile(String ,int))")

def policisOnTextFile(joinPoint):

file_path <- joinPoint.getArgs[0]

u <- fetch_user_info()

if (!hasAccess(u, file_path)) {

throw new AccessControlException()

}

rdd <- joinPoint.proceed()

return enforce_policies(file_path , rdd)

Listing 5: SecureDL advice with point cut using AspectJ

annotation

https://doi.org/10.1145/3427228.3427640
https://doi.org/10.1145/3427228.3427640


In the policy enforcement method, we fetch policies and user

information from our central policy server. Then, we collect connec-

tion information, such as the user’s IP address. Next, we serialize

and distribute the policies. In particular, we create executable byte

code of the filters and masks in the matching policies and distribute

the executables by using a central distributed cache server. Finally,

we attach a filter and a map method with the input DataFrame or

RDD. In the filter method, we execute the serialized filter method

from the matching policies, and in the map method, we execute

data masking policies. In Listing 6, we outline the implementation

of the policy enforcement method.

def enforce_policies(file_path , rdd):

p <- fetch_policies(file_path)

u <- fetch_user_info()

c <- connection_info()

f, m <- serialize_and_distribute(p)

rdd.filter(t -> f(t, u, c) )

.map(t -> m(t, u, c)

return rdd

Listing 6: SecureDL policy enforcement implementation

The example code of Listing 1 with policy enforcement will

have two more modification methods, a filter, and a map, just after

reading the file as listed in Listing 7. Although we did not list ex-

plicitly here, we implemented similar enforcement for all available

DataFrame and RDD creation methods. To summarize, we attach ac-

cess control enforcement policies using APO. We attach our advice

to spark’s data reading methods and ensure these get executed by

modifying the appropriate spark parameters in the spark execution

script.

long count = sc.textFile("users.csv")

.filter(t -> f(t, u, c))

.map(t -> m(t, u, c))

.map(line -> line.split(";"))

.map(fields ->

Integer.parseInteger(fields[1]))

.filter(salary -> salary > 100000)

.count()

Listing 7: An example of applying access control before

executing any user defined transformations

Implementation completeness. One of the biggest challenges

in our implementation is ensuring that we are trapping all meth-

ods. Otherwise, an attacker can bypass the security mechanism

by reading data using those methods. Therefore, to complete our

implementation, we examined all available official tutorials and

thoroughly went over the source codes of related packages in Spark

for the listed methods of reading data in Spark. Furthermore, if

new data reading methods are introduced later, we can easily write

‘advices’ for these methods. However, we observe that data reading

method changes are infrequent. Apache Spark tends to keep the

user-facing API consistent over version updates. Therefore, ma-

chine learning models written in one version can run on a different

version without further modification.

C IMPLEMENTATIONWITH HIVE PLUGINS

We trivially implement our access control framework in

Hive by leveraging Hive’s plugin system. Specifically, we

wrote an authorizer class by extending the public inter-

face org.apache.hadoop.hive.*.plugin.HiveAuthorizer
to integrate our access control checking logic. In ad-

dition, we implemented a factory class extending

org.apache.hadoop.hive.*.plugin.HiveAuthorizerFactory
interface. In this class, we instantiate the authorizer class

with proper parameters. Finally, to configure the hive au-

thorization process properly, we set configuration vari-

able hive.security.authorization.enabled to true and

hive.security.authorization.manager to the full classpath of

our authorizer class.

To test the overhead of our hive reactive enforcement, we load

100GB of TPCH data on Hive and execute TPCH queries 1 to 5.
In Figure 6, we show the overheads. We observe that overheads

range from 0.88% to 23.94%. This wide range in overhead is due to

the fact that a few queries contain operations on policy-controlled

columns and others do not.
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Figure 6: Overhead of running different TPCH queries on

100GB data in Hive with our access control enabled.

D MEMORY CALCULATION

We adopt the technique outlined in [25] to allocate resources for the

YARN container. We exclusively consider two resources - memory

and virtual cores (vCores). We reserve some memory and vCores

for system processes, then divide the remaining memory into con-

tainers. We use number of containers α and memory per container
β as input to calculate the total memory allocation available for

node manager, minimum and maximum memory allocation limit,

application manager allocation limit, map-reduce memory alloca-

tions, and vCores allocation limit. In our setup, we calculate the

number of vCore per node by multiplying 2.5 to available OCPU,

since the OCI OCPU are not shared with other tenants [39]. So, for

a VM.Standard2.4 node calculates the number of available vCores



is 10 = 4 × 2.5. We reserve 2 vCores and 12GB of memory for sys-

tem processes. That leaves us with 8 vCores and 48GB of memory

for yarn container in a node. We set minimum container resources

to 1 vCores and 6GB. We use the equations outlined in Table 1 to

calculate all relevant memory configurations for yarn. We also need

to tune resources for Apache Spark. In particular, we need to divide

the available vCores and memory into executors. Given γ vCores

in a worker node, δ vCores per executor, ε executors per worker

and ω workers in total, we can calculate the number of executors

per node as ε = ⌊ γδ ⌋ . Multiplying this value with the number of

worker nodes gives us the total available executors. We reserve

one executor for resource negotiation. For memory allocation per

executor, we divide the total available memory per node by the

number of executors per node. In our setup, we decided to go with

2 vCores per executor setup. So, on a 4 worker nodes cluster the
relevant parameters are –executor-cores 2 –num-executors 15,
and –executor-memory 10752MB.

Configuration Equation

yarn.nodemanager.resource.memory-mb = α∗ β
yarn.scheduler.minimum-allocation-mb = β
yarn.scheduler.maximum-allocation-mb = α∗ β
mapreduce.map.memory.mb = β
mapreduce.reduce.memory.mb = 2∗ β
mapreduce.map.java.opts = 0.8∗ β
mapreduce.reduce.java.opts = 0.8∗ 2∗ β
yarn.app.mapreduce.am.resource.mb = 2∗ β
yarn.app.mapreduce.am.command-opts = 0.8∗ 2∗ β
Executors per node ε = ⌊ γδ ⌋
Number of executors = ε∗ω − 1

Executor memory =
α∗β
ε

Table 1: Yarn and Spark resource calculation formulas

E POLICIES

Masks:

phone:

name: PhoneNumberMask

type: regex_mask

detection_regex: "\\(?\\d{3}\\)?(-| )

\\d{3}-\\d{4}"

replacement_pattern: '***-***-dddd'

email:

name: EmailMask

type: regex_mask

data_type: email

detection_regex: "\\b[^\\s]\

+@[a-zA-Z0-9]\

[a-zA-Z0-9-_]{0,61}\

[a-zA-Z0-9]{0,1}\

\\.([a-zA-Z]{1,6}|\

[a-zA-Z0-9-]{1,30}\

\\.[a-zA-Z]{2,3})\b"
replacement_pattern: '*@*c'

l4of12d:

type: static_mask

data_type: digit

length: 12

name: ShowLast4Of12Digits

visible_anchor: end

visible_chars: 4

Policy:

customer_accounts:

document: customers.accounts

filter: |

val ip : String

= context("ip").asInstanceOf[String]

val z : Integer

= row("zip").asInstanceOf[Integer]

if (ip == "10.5.17.19") {

// Zeppelin IP

z == 75080

} else if(ip == "10.5.17.10") {

// Command line IP

z >= 75080 \&\& z <= 75081

} else {

false

}

masks:

credit_card:

- Masks.l4of12d

comments:

- Masks.email

- Masks.phone

Listing 8: Policy example
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