
SpanL: Creating Algorithms for Automatic API Misuse
Detection with Program Analysis Compositions

Sazzadur Rahaman1, Miles Frantz2, Barton Miller3, and Danfeng (Daphne)
Yao2

1 University of Arizona
2 Virginia Tech

3 University of Wisconsin-Madison

Abstract. High-level language platforms provide APIs to aid develop-
ers in easily integrating security-relevant features in their code. Prior re-
search shows that improper use of these APIs is a major source of insecu-
rity in various application domains. Automatic code screening holds lots
of potential to enable secure coding. However, building domain-specific
security analysis tools requires both application domain and program
analysis expertise. Interestingly, most of the prior works in developing
domain-specific security analysis tools leverage some form of data flow
analysis in the core. We leverage this insight to build a specification lan-
guage named SpanL4 for domain-specific security screening. The expres-
siveness analysis shows that a rule requiring any composition of dataflow
analysis can be modeled in our language. Our evaluation on four crypto-
graphic API misuse problems shows that our prototype implementation
of SpanL does not introduce any imprecision due to the expressiveness
of the language.

Keywords: Program Analysis, Specification Language, API Misuse

1 Introduction

Platform API misuses [18,7,21,6,22] are a common source of software vulnerabil-
ity in high-level language platforms such as Java and Android. For example, Java
cryptography libraries (such as JCA, JCE, and JSSE5) [6,22,15], Spring security
framework [21], Android system APIs [12,13] are widely misused by the devel-
opers. There are some other non-system APIs misuses that have serious security
consequences in the Android ecosystem. For example, non-system APIs [23] to
access sensitive information (location, IMEI, passwords, etc.), cloud service APIs
for information storage [28], etc. Prior research revealed a multitude of causes
behind this API misuse problem. The lack of cybersecurity training [21], insecure
and misleading suggestions in StackOverflow [7,21], lack of understanding of the

4 SpanL stands for Security sPecificAtioN Language.
5 JCA, JCE, and JSSE stand for Java Cryptography Architecture, Java Cryptography

Extension, and Java Secure Socket Extension, respectively.

2 Rahaman et al.

underlying APIs [6,22], are some of them. It is speculated that large language
model-based automatic code generation tools will add fuel to the fire. Thus,
development-time security screening has become a vital need.

There has been an extensive body of research on building static analy-
sis tools for development-time security screening for Java and Android plat-
forms [26,8,23,19,12,15,19]. Most of these efforts focused on either improving
the detection capability [26] or detecting a new class of misuses [12]. However,
the detection rules and types of vulnerabilities are immutable in most of the
frameworks. This implies that extending existing frameworks for i) detecting
new classes of vulnerabilities or ii) domain-specific security screening is largely
hindered by the necessity of in-depth program analysis expertise. To address this
challenge, Kruger et al. [19] designed a specification language (named CrySL [19])
to model cryptographic API misuses. However, CrySL’s specification language is
tightly coupled with its underlying detection mechanism (i.e., typestate analy-
ses). Given a data object, typestate analyses define a valid sequence of operations
that are allowed on the object. In CrySL, it is unclear how to express compound
rules involving constants that are not known beforehand (i.e., return true if,
all constant values to reach program point x, are not in the set of all constant
values to reach program point y). In this paper, we tackle the following research
question. Is it possible to develop a universal specification language to express
a wide variety of program properties (which we call, modeling for analysis) that
can be used for domain-centric security and correctness checking?

Existing work on finding API misuse vulnerabilities (e.g., improper use of
cryptographic APIs [26], Android’s fingerprint APIs [12], third-party cloud APIs [28],
payment application APIs [20], etc.) suggests that most of the application-level
API misuse problems can be modeled with dataflow-based program properties.
Inspired by these works, we propose a new specification language that can be
used to model any security rule that can be expressed in any arbitrary compo-
sition of various dataflow analysis algorithms. Next, we build a system named
SpanL that takes rule specification written in our language and Java code as
input and outputs the analysis result. Specifically, our main technical innovation
is to allow compositions of basic dataflow analyses to model program properties.

The contribution of this paper is summarized as follows.

– We design a universal specification language named SpanL, to model meta-
level program properties that can be detected by using a composition of
various forms of data-flow analyses. We theoretically prove the expressiveness
of the language.

– To further demonstrate the expressiveness, we model 4 composite secu-
rity rules from [26] in SpanL language. Our experimental evaluation on
CryptoApi-Bench [8] shows that SpanL’s performance is similar to Crypto-
Guard [26].

SpanL decouples application domain expertise from program analysis exper-
tise and enables quick adoption of data flow analyses-based security screening
to any application domain.

Title Suppressed Due to Excessive Length 3

2 Need for Domain-specific security screening

There is an emerging need for scientific methods to enable domain-specific se-
curity checking. Existing work in this space mostly targets individual domains
e.g., improper use of cryptographic APIs [26], Android’s fingerprint APIs [12],
third-party cloud APIs [28], payment application-specific APIs [20], etc. How-
ever, the approach of building a new tool to i) either improve coverage in an
existing domain, or ii) enable security screening in a new domain significantly
hinders its potential.

Additionally, software targeted for the payment card industry [5], IoT indus-
try [14,16,24,27], health care industry [10], etc., needs to follow certain security
guidelines dictated by a governing body [5] or law [10]. These guidelines are cre-
ated to protect the stakeholders by ensuring industry-wide baseline security. For
example, the payment card industry (PCI) data security standard (DSS), pre-
scribes that “Render all passwords unreadable during storage and transmission
for all system components” [25]. This implies that passwords should be either
encrypted or hashed before transmitting or storing. One can assume that a com-
position of data flow analysis can be leveraged to implement this rule. However,
modeling this rule in a generalized fashion is challenging. Firstly, identifying a
data element to be a password is non-trivial. Secondly, APIs for communica-
tion and storage is vastly dependent on the usage of underlying frameworks. For
example, communication APIs in the Spring framework [18] are significantly
different than Apache Struts [2]. Database APIs for MyBatis framework [4]
are significantly different than Hybernate [3]. This implies that modeling one
program-property to implement this rule for different software or domains is
infeasible. However, a specification language to model security properties for
automatic screening address this issue by i) decoupling domain expertise from
program analysis algorithms, ii) enabling easy framework/domain/application-
specific customization.

Code to Analyze

Rule Speci�cation

Parser

Interpreter

Analysis Algorithms

Instruction Set

Compilation

Report

Analysis

Report

Rule IR

Fig. 1. System components of SpanL.

4 Rahaman et al.

3 System Design

In this paper, we present SpanL (Figure 1). SpanL defines a well-structured
specification language to enable domain-specific security validation. Next, we
provide a brief overview of our system.

3.1 Overview

The specification language in SpanL is guided by an extended Backus-Naur form
(EBNF) grammar. EBNF is a collection of extensions to the Backus-Naur form
(BNF) [11] to design modern compilers. We call each rule modeled in SpanL’s
specification language as rule specification. Given a rule specification, Parser
parses the rule and creates a representation for execution. Then, the interpreter
runs instructions from the rule specification and produces the analysis results
(Interpreter in Figure 1). The instruction set of the language is dictated by the
various forms of data flow algorithms, which we discuss next.

SpanL ::= APIs: a Operations: o Emits: ε Constraints: c Exec: s

v, aid, oid, εid, cid ::= γ

V alues x ::= n | s

Type Enviornment Γ ::= . | Γ
γ : identifiers

n : Int

s : String

τ : Set of program-points

τ̄ : A homogeneous array of τ or τ̄

Fig. 2. Overall structure of the SpanL specification language

3.2 Algorithms in SpanL

Data flow analyses enable a wide range of security applications in Java and An-
droid platforms. Given a starting point, data flow analysis is a technique used to
prove facts about a program. Given a set of definitions (starting point), forward
dataflow analysis (aka reaching definition analysis) calculates if the definitions
reach a given program point. Given a program point (starting point), backward
dataflow analysis (aka liveness analysis) calculates a set of variables that are live
at the program point. These algorithms are found to be used for cryptographic
code screening [26,22,15], network [26,17], Android API misuses [13], payment

Title Suppressed Due to Excessive Length 5

application security validation, etc. Therefore, the current version of SpanL, of-
fers security screening with inter- and intra-procedural forward and backward
dataflow analysis with the support of various types of starting point definitions.

3.3 Components of SpanL Language

In Figure 2, we present the overall structure of the SpanL specification language
with various identifiers, values, and the type environment of the language. Code
written in SpanL language contains 5 code sections, which we discuss next.

API section. API section (Figure 3) contains various API definitions, that
can be referred from other sections of the SpanL code. These API definitions
are reusable across various rules. Each API section has unique identifiers (aid).
The method signature of an API requires name and type pairs for both method
arguments and the return variable, which is used to define the starting points in
our dataflow analysis.

API Group a ::= aid : a′ a | aid : a′

API a′ ::= methodSig a′ | methodSig
methodSig ::= ret className: methodName(args)

ret ::= < name : Type > | < void >

args ::= args, < name : Type > | < name : Type >

methodName, name ::= v

Type ::= basicTypes | basicTypes[] | className | className[]
className ::= className.v | v
basicTypes ::= int | char | byte | boolean

Fig. 3. Grammar for parsing the API section

Operation section. Operation section defines various static analysis operations
that are needed to be performed in order to validate the rule. These operations
are referred to from various instructions in the execution section. SpanL supports
5 types of operations (Figure 4), i.e., inter-, intra-procedural forward and back-
ward dataflow analysis and iteration. An operation produces a set of program
points (τ) after its execution. These operations are referred from the execution
section by using their identifiers (oid).

Emit section. Emit sets contain the guidelines for collecting information from
each of the operations defined in the operation sections. SpanL supports two
types of emit sets, i) explicit and implicit. Emit sets that are explicitly defined in
the emit set section are explicit emit sets. These emit sets can be used in various
constraints in the constraint section or printed in the execution section. There
are two types of implicit emit sets. i) simple, and i) compound. If an operation

6 Rahaman et al.

Operation o ::= o | oid : o1 | oid : o2

o1 ::= inter byApi | inter byRegex | intra on byApi | intra on byRegex
inter ::= inter-backward | inter-forward

intra ::= intra-backward | intra-forward

byApi ::= with aid and v

byRegex ::= with x

o2 ::= iterate on

on ::= aid | τ̄

Fig. 4. Grammar for parsing the Operation section

defined in the operation section doesn’t have an explicitly defined emit set, then
an implicit emit set is attached to it. These are called simple emit set, which
collects all the program points after the execution of the corresponding operation.
Compound emit sets are created as a result of compound operations. Explicit
emit sets are of three types, i.e., constants, instruction, and API invocation
based emit sets (Figure 5). The inclusion criteria for constants can be specified
by types or regular expressions. All the program points containing a value of the
specified type or matching the regular expression will be added to the emit set.
In an instruction-based emit set, all the program points matching the regular
expression are collected. Invocation-based emit sets are used to collect program
points containing the specified API invocations, which are identified by aid.

Emitsets ε ::= ε | εid : ε′

ε′ ::= constants | instructions | invocations
constants ::= constants of-type Types | constants matches x

Types ::= Types, Type | Type
instructions ::= instructions matches x

invocations ::= invocations matches aid

Fig. 5. Grammar for parsing the Emit section

Constraint section. This section defines various constraints that are used in
the conditional instructions in the execution section. These constraints are de-
fined by using emit sets, constant values, and API references. A single constraint
in SpanL involves one emit set. Constraints support two sets of conditioning on
emit sets, i.e., in and empty (Figure 6). in can be used to check whether a set

Title Suppressed Due to Excessive Length 7

of values exists in the emit set or not. empty constraints can be used to check
whether an emit set is empty or not.

Constraints c ::= c | cid : c′

c′ ::= in | empty
in ::= {vals} in {εid} | {vals} not in {εid}

empty ::= {εid} empty | {εid} not empty

vals ::= vals, x | x

Fig. 6. Grammar for parsing the Constraint section

Execution section. Execution section contains specific instructions required
to be executed to validate a rule. SpanL supports three types of instructions,
i.e., operation, conditional and print instructions. Operation instructions are
used to execute the operations defined in the operation section. Additionally,
it supports some compound operations in the form of set union, subtraction,
and join based on the results of other operations. The join of two operations
indicates that the trailing operation is executed by using the output of the
leading operation as its starting point. Conditional and print instructions are
used to support conditional branching and print various types of messages to
the standard output, respectively.

Stmt s ::= v := o | o | print(x) | if δ then s1 else s2 | for v do s | s |
v := array(i) | v′ := v.get(i) | v.set(i, o)

Operation o ::= (o) | o1 + o2 | o1 − o2 | o1 ⊕ o2 | v | oid
Conditional Expression δ ::= δ1 and δ2 | δ1 or δ2 | (δ) | not δ | cid

Fig. 7. Grammar for parsing the execution section

Figure 7 shows that SpanL’s execution supports various types of instructions
including, if, for, add, sub, join, assign and print. Here, the type of array(i) is τ̄ . τ̄
has two built-in functions get(i) and set(i, o). As the name implies get is used to
access an element of the array and the set is used to set an element in the array.
Assign statements offer the functionality of assigning the output of an operation
(a set of program points) to a variable. In addition to the basic operations
(invoked by oid), SpanL also supports some compound instructions i.e., set
addition and subtraction and join operations. The join of o1 ⊕ o2 indicates the
execution o1 by using the output program points of o2 as the starting point. We
present the judgments of the type system for the execution section in Figure 8.

8 Rahaman et al.

Γ ` δ : boolean Γ ` s1 : τ Γ ` s2 : τ

Γ ` (if δ then s1 else s2) : τ
IF-OP

Γ ` v : τ Γ ` s : τ

Γ ` (for v do s) : τ
FOR-OP

Γ ` o1 : τ Γ ` o2 : τ

Γ ` (o1 + o2) : τ
ADD-OP

Γ ` o1 : τ Γ ` o2 : τ

Γ ` (o1 − o2) : τ
SUB-OP

Γ ` o2 : τ Γ ` o1 : τ

Γ ` (o1 ⊕ o2) : τ
JOIN-OP

Γ ` x : Int, String

Γ ` (print(x)) : boolean
PRINT-OP

Γ ` o : τ

Γ ` (v := o) : τ
ASSIGN-OP

Γ ` i : Int

Γ ` (v := array(i)) : τ̄
ARRAY-CREATION-OP

Γ ` v : τ̄ Γ ` i : Int

Γ ` (v′ := v.get(i)) : τ
GET-OP

Γ ` v : τ̄ Γ ` i : Int Γ ` o : τ

Γ ` (v.set(i, o)) : boolean
SET-OP

Fig. 8. Type judgements for execution section.

4 Expressiveness of the language

In this section, we analyze the expressiveness of SpanL specification language.
First, we discuss expressiveness theoretically and then we show several case stud-
ies by modeling various security rules.

4.1 Expressiveness analysis

Corollary 1. If the allowed analysis mechanisms are of forward (f) and back-
ward (b) dataflow analysis, then from a program point p : x = $r.func(a1, a2, · · · , ak),
one can start 2k + 3 numbers of analysis, including k + 1 backward data flow
analysis by using $r and ai ∀i ∈ [1, k] as starting criteria, k+2 forward data flow
analysis by using x, $r and ai ∀i ∈ [1, k] as starting criteria. So if the number
of possible analyses can be run from a program point p is O = {oi},∀i ∈ [1, |O|],
then |O| ≤ 2k + 3.

Definition 1. Super-analysis set. If Poi represents the set of all the reachable
program points after running an analysis oi from a program point p, then Poi

can be expressed as p
oi Poi . Let O is the set of a maximum number of data flow

analysis that can be run from p. Running O analysis from p can be expressed as

p
O
 PO, where PO = ∪{Poi},∀i ∈ [1, |O|] and |O| ≤ 2k+ 3. Here, we define PO

as the super-analysis set for p. This means, PO can not be further extended by
running new analyses from p.

Definition 2. Super-analysis join sets. If ρi is the set of all program points
returned after starting the super-analysis from program point pi and then recur-
sively continue super-analysis by using the results and starting criteria until no
new program points are reached. Then ρi can be expressed as follows.

ρi = pi
O1 · · · {Po}j

Oj
 · · · {Po}n

Title Suppressed Due to Excessive Length 9

Definition 3. Mutually exclusive super analysis join sets. Let the super-
analysis sets, starting from program point 1, 2, · · · , n are ρ1, ρ2, · · · , ρn. We call
two super-analysis sets ρi, ρj mutually exclusive if ρi (ρj ,∀i, j ∈ [1, n].

If ρi and ρj are mutually exclusive super-analysis join sets, then combining
both of them would increase more coverage of the analysis.

Definition 4. Simple rule. A rule is simple if the expressiveness of its security
property is bounded by a super-analysis join set.

Definition 5. Compound rule. A rule is compound if it requires at least two
mutually exclusive super analysis join sets to model the security property of the
rule.

Theorem 1. The expressiveness of a security property that can be detected by
using a composition of various data flow analyses, is bounded by the compound
rule with all mutually exclusive super analysis join sets.

Proof. A compound rule that would need all the mutually exclusive super-analysis
join sets combinely represents the set of all possible compositions of dataflow
analysis that can be run on a program. That means if a security property can
be expressed by a composition of data flow analysis, it must be bounded by the
compound rule with all mutually exclusive super analysis join sets.

SpanL supports joining (JOIN-OP), and combining multiple analysis sets
(ADD-OP, SUB-OP). This means SpanL language contains all the properties
of expressing a compound rule. Thus, SpanL can be used to define all possible
combinations of data flow analysis possible on a given program.

10 Rahaman et al.

Listing 1.1. Rule to detect insecure RSA keys

APIs:

kpg_apis:

<kpg: KeyPair> KeyPairGenerator: getInstance(<algo: String>)

<kpg: KeyPair> KeyPairGenerator: getInstance(<p: Provider>,

<algo: String>)

kpg_init:

void KeyPairGenerator: initialize(<size: int>)

Operations:

o1: inter-backward with kpg_apis and algo

o2: intra-forward with kpg_apis and kpg

o3: inter-backward with kpg_init and size

Emits:

{kpg}: *

{algo}: constant of-type java.lang.String

{size}: constant of-type int, java.lang.Integer

Constraints:

c1: kpg_init in {kpg}

c2: {"RSA"} in {algo}

c3: {2048, 4096} not in {size}

Exec:

o1, o1 ⊕ o2

if c2 and (not c1):

print ("Must invoke initialize for RSA")

if c1:

o3 ⊕ o2

if c2 and c3:

print ("Key size must be {2048, 4096}")

4.2 Case studies

In this section, we present 4 case studies of cryptographic API misuse in SpanL
language, i.e., i) insecure use of RSA, ii) insecure hostname verifier, iii) insecure
symmetric crypto, and iv) insecure symmetric keys usage. These case studies are
commonly found in existing literature [22,26].

In Listing 1.1, we show the code written in SpanL language to detect insecure
RSA key uses. Note that, this is one of the most complex security rules that in-
volves multiple rounds of analysis. The default use of the RSA key pair generator
uses 1024 bit key size. Thus, one requires to invoke the initialize method with

Title Suppressed Due to Excessive Length 11

proper key size i.e., 2048, 4096 to generate secure RSA keys. Here, we first define
two API groups for getInstance and initialize APIs. Next, we define the set
of operations to be performed with these APIs. o1 is used to determine if the key
pair is of RSA. Then o2 is used to find if initialize method was invoked on
the generated key pair instance. Finally, o3 is used to find the value of the key
size parameter of the initialize method invocation. The emit set defines what
values should be collected in each operation. The left-hand side indicates the set
and the right-hand side contains the criteria. For example, {kpg} : ∗ indicates
to store all the program points reached after running o2. Next, the constraints
and Execution section defines the corresponding constraints and the sequence
of instructions to run, respectively. In the execution section, o1, o2 join with o1
indicates running operation o2 by using the outputs of o1 as starting points.

The code for other case studies is presented in the appendix. Note that, while
modeling these rules we followed the mapping between the program property and
the rule outlined in CryptoGuard [26].

5 Experimental Evaluation

In this section, we present the evaluation results of our SpanL system.
Implementation. We implemented SpanL in Java. We used ANTLR [1] for
parsing and validating the rule specification code written in SpanL language.
Our current implementation supports both backward and forward intra-procedural
data flow analysis. To support inter-procedural backward data flow analysis, we
leveraged the version implemented in CryptoGuard [26], which is path insen-
sitive. Our current prototype does not support inter-procedural forward data
flow analysis, which can be easily added in the future.
Experiment Design for Evaluating Expressiveness. There can be two
sources of imprecision in SpanL, i) imprecision due to imprecise modeling of
a security rule, ii) imprecision induced by the underlying analysis algorithm.
Since the main contribution of SpanL is the specification language, thus we only
focus on the expressiveness in our evaluation. Specifically, we ask the following
research question: Is there any imprecision due to modeling a security property
in SpanL?

To answer this question, we designed the following experiment. We modeled
4 cryptographic API misuse rules (Section 4.2) from CryptoGuard in SpanL.
Since our implementation reuses CryptoGuard’s algorithms, any deviation
in our result from CryptoGuard would indicate imprecision in the model.
To test this, we run CryptoGuard and SpanL in CryptoApi-Bench [9].
CryptoApi-Bench is a benchmark containing various cryptographic API mis-
use vulnerabilities.
Experimental Result. In CryptoApi-Bench, there is a total of 6 cases (5
true positives (TP) and 1 true negative cases (TN)) of insecure RSA key us-
age. It has 1 instance of insecure hostname verification, 36 instances (30 TP, 6
TN) of insecure symmetric ciphers, and 9 (7 TP, 2 TN). In Table 1, we show
the evaluation results of both SpanL and CryptoGuard. It shows that mod-

12 Rahaman et al.

Table 1. Expressiveness evaluation results on CryptoApi-Bench. It indicates that
SpanL does not introduce new imprecision than its underlying algorithms (which were
reused from CryptoGuard).

Detection Goals CryptoGuard SpanL

TP FP FN TP FP FN

Insecure RSA keys 4 1 1 4 1 1
Insecure hostname verifier 1 0 0 1 0 0
Insecure symmetric crypto 30 5 0 30 5 0
Insecure symmetric keys 5 1 2 5 1 2

eling the security rules in SpanL did not incur new imprecision, indicating the
expressiveness

6 Conclusion

Enabling domain-specific security screening is important to ensure baseline se-
curity in various application domains. Prior research [13,17,18,25] showed that
various domain-specific security rules can be modeled as API-centric data flow
problems. In this paper, we designed a specification language to model such
problems that can be automatically checked. Then we built a system named
SpanL, to run codes written in our specification language for automatic code
screening. The expressiveness analysis shows that a rule requiring any composi-
tion of dataflow analysis can be modeled in our language. Our evaluation on four
cryptographic API misuse problems shows that our prototype implementation
of SpanL does not introduce any imprecision due to the expressiveness of the
language.

Acknowledgements

This work has been supported in part by the National Science Foundation under
Grant No. CNS-1929701.

References

1. Antlr: Quick start. https://www.antlr.org/, last accessed: 02-20-2023

2. Apache struts. https://struts.apache.org/, last accessed: 02-20-2023

3. Hybernate: Everything data. https://hibernate.org/, last accessed: 02-20-2023

4. Mybatis 3: Introduction. https://mybatis.org/mybatis-3/, last accessed: 02-20-
2023

5. Payment Card Industry (PCI) Data Security Standard: Requirements and security
assessment procedures. https://www.pcisecuritystandards.org/documents/

PCI_DSS_v3-2-1.pdf (2018)

Title Suppressed Due to Excessive Length 13

6. Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M.L., Stransky, C.:
Comparing the Usability of Cryptographic APIs. In: IEEE S&P’17. pp. 154–171
(2017)

7. Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L., Stransky, C.: You Get
Where You’re Looking for: The Impact of Information Sources on Code Security.
In: IEEE S&P’16. pp. 289–305 (2016)

8. Afrose, S., Rahaman, S., Yao, D.: Cryptoapi-bench: A comprehensive benchmark
on java cryptographic API misuses. In: 2019 IEEE Cybersecurity Development,
SecDev 2019, Tysons Corner, VA, USA, September 23-25, 2019. pp. 49–61 (2019)

9. Afrose, S., Xiao, Y., Rahaman, S., Miller, B.P., Yao, D.: Evaluation of static vul-
nerability detection tools with java cryptographic API benchmarks. IEEE Trans.
Software Eng. 49(2), 485–497 (2023)

10. Annas, G.J.: Hipaa regulations: a new era of medical-record privacy? New England
Journal of Medicine 348, 1486 (2003)

11. Backus, J.W.: The syntax and semantics of the proposed international algebraic
language of the zurich ACM-GAMM conference. In: Information Processing, Pro-
ceedings of the 1st International Conference on Information Processing, UNESCO,
Paris 15-20 June 1959. pp. 125–131 (1959)

12. Bianchi, A., Fratantonio, Y., Machiry, A., Kruegel, C., Vigna, G., Chung, S.P.H.,
Lee, W.: Broken fingers: On the usage of the fingerprint API in android. In: 25th
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018 (2018)

13. Bosu, A., Liu, F., Yao, D.D., Wang, G.: Collusive Data Leak and More: Large-
scale Threat Analysis of Inter-app Communications. In: AsiaCCS 2017. pp. 71–85
(2017)

14. Department of Justice: Securing your “internet of things” devices (2017), https:
//www.justice.gov/criminal-ccips/page/file/984001/download

15. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryp-
tographic misuse in Android applications. In: ACM CCS’13. pp. 73–84 (2013)

16. European Union Agency for Network and Information Security: Base-
line security recommendations for iot in the context of critical infor-
mation infrastructures (2017), https://www.enisa.europa.eu/publications/

baseline-security-recommendations-for-iot/@@download/fullReport

17. Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., Freisleben, B.:
Why Eve and Mallory love Android: an analysis of Android SSL (in)Security. In:
ACM CCS’12. pp. 50–61 (2012)

18. Islam, M., Rahaman, S., Meng, N., Hassanshahi, B., Krishnan, P., Yao, D.D.: Cod-
ing practices and recommendations of spring security for enterprise applications.
In: 2020 IEEE Cybersecurity Development, SecDev 2020 (2020), (to appear)

19. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: Crysl: An extensible ap-
proach to validating the correct usage of cryptographic apis. In: 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018,
Amsterdam, The Netherlands. pp. 10:1–10:27 (2018)

20. Mahmud, S.Y., Acharya, A., Andow, B., Enck, W., Reaves, B.: Cardpliance: PCI
DSS compliance of android applications. In: Capkun, S., Roesner, F. (eds.) 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020. pp.
1517–1533. USENIX Association (2020)

21. Meng, N., Nagy, S., Yao, D., Zhuang, W., Argoty, G.A.: Secure Coding Practices
in Java: Challenges and Vulnerabilities. In: ACM ICSE’18. Gothenburg, Sweden
(May 2018)

14 Rahaman et al.

22. Nadi, S., Krüger, S., Mezini, M., Bodden, E.: Jumping Through Hoops: Why
Do Java Developers Struggle with Cryptography APIs? In: ICSE’16. pp. 935–946
(2016)

23. Nan, Y., Yang, Z., Wang, X., Zhang, Y., Zhu, D., Yang, M.: Finding clues for your
secrets: Semantics-driven, learning-based privacy discovery in mobile apps. In: 25th
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018 (2018)

24. National Institute of Standards and Technology: Iot device cybersecurity guid-
ance for the federal government: Establishing iot device cybersecurity requirements
(2021), https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-213.pdf

25. Rahaman, S., Wang, G., Yao, D.D.: Security certification in payment card indus-
try: Testbeds, measurements, and recommendations. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-
15, 2019. pp. 481–498. ACM (2019)

26. Rahaman, S., Xiao, Y., Afrose, S., Shaon, F., Tian, K., Frantz, M., Kantarcioglu,
M., Yao, D.D.: Cryptoguard: High precision detection of cryptographic vulnera-
bilities in massive-sized java projects. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019. pp. 2455–2472 (2019)

27. US Chamber of Commerce: The iot revolution and our digital security: Principles
for iot security (2017), https://scglegal.com/wp-content/uploads/2018/02/

2017-Denver-TR-1550-PP-The.IoT_.Revolution..Our_.Digital.Security.

Final-002-WILEY-REIN.pdf

28. Zuo, C., Lin, Z., Zhang, Y.: Why does your data leak? uncovering the data leakage
in cloud from mobile apps. In: IEEE S&P’16 (2019)

Title Suppressed Due to Excessive Length 15

Appendix

Listing 1.2. Rule to detect insecure hostname verifier

APIs:

host_name_apis:

boolean HostnameVerifier: verify(<name: String>,

<session: SSLSession>)

Operations:

o1: intra-backward host_name_apis with "return"

Emits:

{o1_out}: *

CONSTRAINTS:

c1: "@parameter1: javax.net.ssl.SSLSession" not in {o1_out}

Exec:

o1

if c1:

print("verify method is not properly implemented!")

Listing 1.3. Rule to detect insecure symmetric ciphers

APIs:

crypto_apis:

Cipher Cipher: getInstance(<name: String>)

Cipher Cipher: getInstance(<name: String>, <p: Provider>)

Operations:

o1: inter-backward with crypto_apis and name

Emits:

{name}: constants of-type java.lang.String

Constraints:

c1: {"AES/ECB", "DES", "RC4", "IDEA"} in {name}

Exec:

o1

if c1:

print("Found broken crypto instances")

16 Rahaman et al.

Listing 1.4. Rule to detect insecure symmetric keys

APIs:

sk_apis:

void SecretKeySpec: SecretKeySpec(<keyBytes: byte[]>)

void SecretKeySpec: SecretKeySpec(<keyBytes: byte[]>,

<p: Provider>)

Operations:

o1: inter-backward with sk_apis and keyBytes

Emits:

{keyBytes}: constant of-type java.lang.String, byte[]

Constraints:

c1: {keyBytes} not empty

Exec:

o1

if c1:

print("Keys must not be derived from constants")

